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Abstract

Hamiltonian neural networks are state-of-the-art models that regress the vector
field of a dynamical system under the learning bias of Hamilton’s equations. A
recent observation is that incorporating a second-order bias regarding the additive
separability of the Hamiltonian reduces the regression complexity and improves
regression performance. We propose three separable Hamiltonian neural networks
that incorporate additive separability within Hamiltonian neural networks using
observational, learning and inductive biases. We show that the proposed models
are more effective than a Hamiltonian neural network at regressing a vector field,
and have the capability to interpret the kinetic and potential energy of the system.

1 Introduction

Hamiltonian neural networks [2, 4] are physics-informed neural networks with learning biases [6]
given by Hamilton’s equations and their corollaries. They unsupervised-ly regress the vector field [12,
11] and the Hamiltonian [8] of a dynamical system from discrete observations of its state space or
vector field, and outperform their physics-uninformed counterparts in doing so [7].

A Hamiltonian system is additively separable if the Hamiltonian can be separated into additive
terms, each dependent on disjoint subsets of the state variables [3]. Given two disjoint subsets of
state variables x⃗ and y⃗, the Hamiltonian, H(x⃗, y⃗) = T (x⃗) + V (y⃗), has a mixed partial derivative of
zero. T and V are arbitrary [3] but can represent the kinetic and potential energies of a mechanical
Hamiltonian. Recently, Gruver et al. in their ICML 2022 spotlight paper, found that additive
separability allowed the physics-informed neural network to "avoid[...] artificial complexity from the
coordinate system" (the state variables) and improve its performance [5]. This motivates incorporating
additive separability within Hamiltonian neural networks to regress additively separable Hamiltonians.

The main contribution of this work is three independent methods to incorporate additive separability
into a Hamiltonian neural network. We call this family of Hamiltonian neural networks, separable
Hamiltonian neural networks. The separable Hamiltonian neural networks follow the nomenclature of
Karniadakis et al. [6] and incorporate additive separability using either an observational bias, learning
bias, or inductive bias. The first model incorporates an observational bias by training on newly
generated data that embody separability. The second model incorporates a learning bias through the
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loss function of the Hamiltonian neural network. The third model incorporates an inductive bias
through the architecture of the Hamiltonian neural network using conjoined multilayer perceptrons.

We empirically evaluate the performance of the proposed models against a baseline Hamiltonian
neural network on a variety of representative additively separable Hamiltonian systems for the task
of regressing an additively separable Hamiltonian vector field. We find that the proposed models
outperform the baseline on the regression task. Evaluation of the proposed model with inductive bias
also allows interpretation of the kinetic and potential energy of each Hamiltonian system.

2 Methodology

Four Hamiltonian neural networks, shown in Figure 1, are compared for the task of regressing the
vector field of an additively separable Hamiltonian system from random samples of a vector field. One,
the baseline, is uninformed of the additive separability of the Hamiltonian system. Three proposed
models are informed, and incorporate observational, learning and inductive biases respectively.

Figure 1: Architecture of the baseline and proposed Hamiltonian neural networks. Their loss
functions, shown in yellow, comprise equations fk with a coefficient ck representing the real-valued
weight of each fk. (a) The Hamiltonian neural network (HNN) and proposed separable Hamiltonian
neural network with observational bias (sHNN-O). They have the same architecture but differ in their
input data. (b) The proposed separable Hamiltonian neural network with learning bias (sHNN-L). (c)
The proposed separable Hamiltonian neural network with inductive bias (sHNN-I).

2.1 The baseline Hamiltonian neural network

We adapt Hamiltonian neural networks [2, 4] (Figure 1a) for the task of regressing the vector field.
Hamiltonian neural networks incorporate a Hamiltonian learning bias into the model using the linear
summation of three equations in its loss function. The first is an arbitrary pinning term that "pins" the
regressed Hamiltonian to one among several solutions that are modulo and additive constant. The
second and third ensure the model satisfies Hamilton’s equations in Equation 1. In Equation 1, x⃗ and
y⃗ are conjugate state variables of the Hamiltonian system, and typically referred to as the position
and momentum of a mechanical Hamiltonian.

dx⃗

dt
=

∂H(x⃗, y⃗)

∂y⃗

dy⃗

dt
= −∂H(x⃗, y⃗)

∂x⃗
(1)

To perform the task of regressing the vector field of a Hamiltonian system, the Hamiltonian neural
network uses instantaneous, random samples of the state variables and vectors. The state variables are
input to the model. The output is the regression surrogate, an estimator of the Hamiltonian. Training
is supervised through the loss function, which uses the vectors corresponding to the state variables
input to the model. The derivative of the surrogate Hamiltonian at all input state variables is the
surrogate vector field, computed via automatic differentiation [9] of the Hamiltonian neural network.

The separable Hamiltonian neural networks adopt the Hamiltonian learning bias of the Hamiltonian
neural network and further incorporate biases regarding additive separability. They perform the task
of regressing the Hamiltonian vector field in the same way as the Hamiltonian neural network.
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2.2 Incorporating a separability observational bias within a Hamiltonian neural network

The baseline Hamiltonian neural network can be informed of additive separability by incorporating an
observational bias. Consider data of the vector field comprising instantaneous state variables, which
are (x⃗, y⃗), and their instantaneous time derivatives. Additive separability of the Hamiltonian means
that the time derivatives of the state variables are dependent solely on x⃗ or y⃗. Therefore, new samples
of the vector field can be generated, by creating new combinations of x⃗ and y⃗ from the existing state
variables and inferring their instantaneous time derivatives from existing samples of the vector field
with the same x⃗ or y⃗. As each of the N samples can be combined with N − 1 remaining samples, the
quantity of existing data can be quadratically scaled. Training the Hamiltonian neural network on the
new data incorporates the observational bias and allows the model to regress a surrogate Hamiltonian
that reflects the additive separability of the data.

2.3 Incorporating a separability learning bias within a Hamiltonian neural network

The baseline Hamiltonian neural network can be informed of additive separability by incorporating a
learning bias into the Hamiltonian neural network, using the linear summation of four equations in its
loss function (Figure 1b). The first three equations follow from the Hamiltonian neural network. The
fourth equation ensures the mixed partial derivative of the surrogate Hamiltonian Ĥ is zero. This
incorporates a learning bias in the separable Hamiltonian neural network that favours convergence of
the Hamiltonian neural network toward a surrogate Hamiltonian that is additively separable.

2.4 Incorporating a separability inductive bias within a Hamiltonian neural network

The baseline Hamiltonian neural network can be informed of additive separability by incorporating
an inductive bias using a non-fully connected architecture (Figure 1c) comprising two smaller neural
networks conjoined only at the output layer. Each smaller conjoined neural network has one output.
Their sum (indicated by the dotted lines in Figure 1) is the surrogate Hamiltonian. This architecture
ensures additive separability as each smaller neural network has an input of either x⃗ or y⃗, and is,
therefore, a function of either x⃗ or y⃗. During forward propagation, the sum of the two conjoined
neural networks ensures the surrogate Hamiltonian is always the sum of two independent functions
of x⃗ and y⃗. The mixed partial derivative of the surrogate Hamiltonian is by design always zero.
Additive separability is strictly satisfied. The separable Hamiltonian neural network with inductive
bias regresses a surrogate Hamiltonian that implicitly and strictly satisfies additive separability.

3 Results

The four models are compared on the task of regressing the Hamiltonian vector field of an n-
dimensional Hamiltonian. Training data comprising 512 samples of the state variables, (x⃗, y⃗), and
their corresponding time derivatives or vector field. Training data is generated uniformly at random
for each Hamiltonian system. In training, 20% of the training data is set aside as validation data for a
dynamic stopping criterion using validation-based early stopping [10] and a batch size of 80 is used.

The models to be experimented on are designed with two hidden layers, an Adam optimizer and
softplus activation. All models have an input layer with width 2 × n corresponding to the 2 × n
state variables and an output layer with width one representing the surrogate Hamiltonian H ∈ R.
The models are trained until there is no improvement in the validation loss. Following Hamiltons’
equations, the derivative of the surrogate Hamiltonian with respect to its inputs x⃗ and y⃗ is equivalent
to the vector field. The derivative is computed via automatic differentiation. The performance of
the models is measured by the error in regressing the vector field, using the vector error shown in
Equation 2 [1]. v̂ is the regressed vector from the derivative of the surrogate Hamiltonian and v is the
true vector from test data. The test data set comprises d = 102n vectors, evenly spaced in each of the
n dimensions of the Hamiltonian system. Details regarding the Hamiltonian systems used for the
experiments are in Appendix ??. The code will be made available online.

EV =
1

d

d∑
k=1

||v̂k − vk||2
||vk||2

. (2)
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For the setup of the Hamiltonian neural network and separable Hamiltonian neural network with
learning bias, their loss functions comprise equations fk, with a weight coefficient ck. For both
models, all equations are given the same weight of ck = 1. For the model with learning bias, this
balances the importance of additive separability and Hamilton’s equations.

For the separable Hamiltonian neural network with observational bias, the training data comprises
samples (x⃗i, y⃗i) and time derivatives (dx⃗i

dt ,
dy⃗i

dt )∀i ∈ N = 512×80%. New data is created comprising
samples (x⃗i, y⃗i+m) with time derivatives (dx⃗i+m

dt , dy⃗i

dt ) for m = {1, 2}, and appended to the original
data. As m increases, the marginal improvements in regressing the vector field diminishes.

For the setup of the Hamiltonian neural network with inductive bias, forward propagation through
the proposed model is computed as xz = σ(Wz × xz−1 + Bz) where σ is the activation function,
xz is the output of layer z, Wz is the weight matrix of layer z of shape 2 × Lz × Lz−1, and Lz

and Lz−1 are the widths of layers z and z − 1 respectively, and Bz is the bias matrix of layer z of
shape 2× 1× Lz . The 2 in Wz and Bz correspond to the two conjoined neural networks, which are
summed in the last layer. Further details regarding the setups are available in Appendix ?? and ??.

Table 1: Vector error EV and standard error (in brackets) of the baseline Hamiltonian neural network
(HNN) and proposed separable Hamiltonian neural networks with observational (sHNN-O), learning
(sHNN-L) and inductive (sHNN-I) biases. The lowest vector error is bolded.

Experiment HNN sHNN-O sHNN-L sHNN-I
Non-linear Pendulum 1.24E-02 (2.5E-03) 6.80E-03 (1.7E-03) 9.97E-03 (1.7E-03) 8.54E-03 (1.3E-03)

Trigo 1.18E-02 (1.1E-03) 8.17E-03 (7.2E-04) 1.22E-02 (1.2E-03) 8.19E-03 (9.1E-04)

Arctangent 5.09E-03 (2.9E-04) 3.55E-03 (2.5E-04) 4.64E-03 (4.0E-04) 5.42E-03 (1.2E-03)

Logarithmic 4.32E-03 (2.2E-04) 3.02E-03 (1.7E-04) 4.00E-03 (2.4E-04) 4.70E-03 (2.5E-04)

Anisotropic Oscillator 7.33E-03 (6.3E-04) 4.53E-03 (4.5E-04) 5.67E-03 (5.7E-04) 5.43E-03 (4.8E-04)

Henon Heiles 1.11E-02 (8.9E-04) 5.48E-03 (3.8E-04) 8.04E-03 (6.1E-04) 7.14E-03 (6.4E-04)

Toda Lattice 9.47E-03 (4.9E-04) 4.65E-03 (3.6E-04) 5.39E-03 (3.2E-04) 7.28E-03 (8.9E-04)

Coupled Oscillator 1.10E-02 (1.4E-03) 5.35E-03 (5.0E-04) 5.82E-03 (4.9E-04) 6.43E-03 (4.5E-04)

From Table 1, in general, all proposed separable Hamiltonian neural networks regress the Hamiltonian
vector field with a lower vector error than the baseline Hamiltonian neural network. The proposed
models leverage physics information regarding separability to penalise or prevent interaction between
the state variables and this reduces the complexity of the Hamiltonian regression problem. The
regression of the Hamiltonian vector field is therefore improved. The model with observational bias
regresses the vector field best. The observational bias generates more samples of the data, which
simultaneously emphasises additive separability and covers the input domain of the Hamiltonian
system, which eases the interpolation task to improve the regression of the vector field. The models
with learning and inductive biases only emphasise additive separability. An inductive bias generally
outperforms a learning bias by restricting regressions to strictly satisfy separability, therefore forcing
the model to simplify a complex regression problem into two smaller ones.

Incorporating knowledge regarding the additive separability of a mechanical Hamiltonian in the form
of an inductive bias also improves the interpretability of the separable Hamiltonian neural network.
The two conjoined neural networks become surrogates for the kinetic and potential energies of an
otherwise black-box Hamiltonian system, and the instantaneous kinetic and potential energies can
be evaluated. The absolute errors in regressing the kinetic and potential energy for five mechanical
Hamiltonian systems are reported in Table 2. None of the other Hamiltonian neural networks allow
such an interpretation of the kinetic and potential energies of the Hamiltonian system.

Table 2: Absolute error and standard error (in brackets) in regressing the kinetic and potential energy
of the Hamiltonian system using the separable Hamiltonian neural network with inductive bias.

Experiment Kinetic Energy Potential Energy
Non-linear Pendulum 5.85E-04 (1.2E-04) 5.38E-03 (1.7E-03)

Anisotropic Oscillator 4.28E-04 (4.6E-05) 4.68E-04 (6.8E-05)

Henon Heiles 5.17E-04 (5.7E-05) 6.29E-04 (8.4E-05)

Toda Lattice 1.22E-03 (2.1E-04) 1.56E-03 (2.2E-04)

Coupled Oscillator 8.10E-04 (6.9E-05) 8.30E-04 (1.1E-04)
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4 Conclusion

We propose three separable Hamiltonian neural networks that incorporate a second-order bias, or
additive separability, within Hamiltonian neural networks. The resulting models are more effective
than Hamiltonian neural networks in regressing Hamiltonian vector fields as they leverage additive
separability to avoid artificial complexity between state variables. The best model for regression
incorporates an observational bias, which additionally covers the input domain of the Hamiltonian
system to ease the interpolation task. The best model for interpretability incorporates an inductive
bias, to obtain insights regarding the kinetic and potential energies of the Hamiltonian system.

We are currently extending the approach to dynamically detect and incorporate separability as an
inductive bias by rewiring the Hamiltonian neural network as it learns.
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