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Abstract

We present a numerical method to simulate the dynamics of continuous variable
quantum many-body systems. Our approach is based on custom neural-network
many-body quantum states. We focus on dynamics of two-dimensional quantum
rotors and simulate large experimentally-relevant systems with using state-of-the-
art sampling approaches based on Hamiltonian Monte Carlo. We demonstrate
the method can access quantities like the return probability and vorticity oscil-
lations after a quantum quench in two-dimensional systems of up to 64 (8 × 8)
coupled rotors. Our approach can be used to perform previously unexplored non-
equilibrium simulations bridging the gap between simulation and experiment.

1 Introduction

Non-equilibrium quantum many-body physics has been at the center of physics and chemistry re-
search for over a decade [1, 2]. The field is driven by remarkable progress in our ability to control
matter at the atomic scale [3–5]. Such quantum control [6–9] of modern experiments and hardware
is becoming increasingly limited by numerical simulation of the real-time evolution of quantum
systems. Fast entanglement growth out of equilibrium forces one to keep track of many-body corre-
lations. Challenges remain despite recent progress [10–19], especially in cases of realistic systems
with continuous-variables. Practically, calculations are roadblocked by numerical instabilities re-
sulting from a combination of Monte Carlo noise and flatness of the quantum geometry of modern
neural network wave functions [20, 17, 21–23].

In this work, we present an approach for capturing long-time dynamics of continuous-variable 2D
lattice models, using a combination of methods that were previously unexplored in the field – the
Hamiltonian Monte Carlo sampler, a tailored variational ansatz and novel regularization of projected
dynamics. We focus on the quantum rotor model with direct applications to arrays of coupled
Josephson junctions and explore previously unreachable system sizes and evolution times.

2 Model and Methods

Consider a system of planar rotors, whose angles θk with respect to an arbitrary axis on a lattice Λ
withN sites. We use the basis |θ⟩ ≡ |θ1, . . . , θN ⟩ for the Hilbert space H. We start with an effective
Hamiltonian that captures the relevant physics of superconducting Josephson junctions [24–26] such
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Figure 1: Top: The (complex) two-layer convolutional neural network ψα(θ) used for simulations
of two-dimensional QRM systems. The output is a single complex number we interpret as lnψα(θ).
Bottom: The Hamiltonian Monte Carlo algorithm. Samples are collected as snapshots of solutions
of Hamilton’s equations.

that angles θk represent superconducting phases of adjacent Josephson junctions:

H = −gJ
2

∑
k

∂2

∂θ2k
− J

∑
⟨k,l⟩

cos(θk − θl) , (1)

where Lk = −i ∂θk is the 2D angular momentum operator and n̂k = (cos θk, sin θk) are the rotors
in the continuous basis |θ⟩ of choice. The Hamiltonian in Eq. 1 is defines the quantum rotor model
(QRM). Its equilibrium properties [27] have been studied using Quantum Monte Carlo (QMC)
[28, 29] methods. However, QRM real-time dynamics have not been explored despite prospects
of practical applications in the study of dynamics of arrays of coupled Josephson junctions [30].
Direct solution of the relevant time-dependent Schrödinger equation (TDSE) i ∂tψ = H ψ is pro-
hibitively expensive even for a handful of interacting rotors. The continuous nature of the |θ⟩ basis
exacerbates the problem.

We represent a quantum state using a convolutional neural network (CNN) wavefunction ψα(θ)
where α ∈ CP is a set of P complex variational parameters. The full neural-network quantum state
(NQS) then reads |ψα⟩ =

∫
dθ ψα(θ) |θ⟩ where dθ ≡ dθ1 · · · dθN . The integral is performed over

the cube [−π, π]N .

Our simulation of the real-time dynamics of NQS is based on the time-dependent Variational Monte
Carlo (t-VMC) method [31, 16, 15]. The core assumption that allows us to approximately solve the
TDSE is that of time dependence of neural-network parameters α = α(t). Trajectories α(t) can
be derived by substituting ∂tψα = α̇ · ∇αψα· into the TDSE. Evolution equations [22] then read
i Sα̇ = g, where

Sµν =
〈
O†
µOν

〉
−
〈
O†
µ

〉〈
Oν

〉
and gµ =

〈
O†
µH

〉
−

〈
O†
µ

〉〈
H
〉
. (2)

Averages ⟨·⟩ ≡ ⟨ψα|·|ψα⟩/⟨ψα|ψα⟩ are performed at time t (i.e. for α = α(t)). Parameters α are
indexed by {µ, ν, . . .} in our notation. Operator Oµ is defined by ∂αµ

|ψα⟩ = Oµ |ψα⟩. The matrix
S is commonly called the quantum geometric tensor (QGT) [32, 21, 23] and corresponds to the
metric tensor of the neural-network parameter manifold.

Since quantum averages over an exponentially large Hilbert space H in Eq. 2 cannot be computed
exactly, Markov chain Monte Carlo (MCMC) sampling methods are often employed [33, 34]. In
VMC calculations, it is common to rewrite quantum averages such as those in Eq. 2 using the local
operator trick. We refer the interested reader to an excellent summary in Refs. [22, 31].

⟨H⟩ = ⟨ψα|H |ψα⟩
⟨ψα|ψα⟩

=

∫
dθ ψ∗

α(θ)Hψα(θ)∫
dθ |ψα(θ)|2

= E
θ∼|ψα|2

[
Hψα(θ)

ψα(θ)

]
. (3)

After computing the matrix S and the vector g at time t, one can formally define α̇ = −i S−1g and
use any ordinary differential equation (ODE) integrator to obtain the next set of parameters at time

2



0.5

0.0

p(
t)

/J

Equilibrium values

0.25

0.50

M
(t)

0 2 4 6 8 10 12 14
Jt

2.5
5.0
7.5

Va
r(

) g = 3 4.5
g = 3 6.0
g = 3 9.0

1.0 0.5 0.0 0.5 1.0
Mx

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
y

Figure 2: Results for different quenches from initial value gi = 3 on a two-dimensional 8×8 square
lattice. Left: Potential energy, magnetization and angular variance as functions of real time. Right:
A parametric plot of the mean rotor direction, parametrized by the real time t.

t + δt. This update rule strongly resembles the quantum natural gradient optimization scheme [21,
23]. We use the Bogacki-Shampine Runge Kutta 3(2) solver. [35–37].

However, the inverse S−1 is often ill-defined. One reason is noisy Monte Carlo estimates of matrix
elements make small eigenvalues vanish. Therefore, quickly and efficiently obtaining many uncorre-
lated samples from |ψα(t)(θ)|2 is crucial. In addition, overparametrizing ψα introduces redundancy,
producing linearly dependent or vanishing rows/columns in S. Therefore, choosing an smaller CNN
trial wavefunction is equally important. In practice, adding more parameters to the wavefunction
can sometimes unexpectedly reduce accuracy by making S ill-conditioned.

We introduce a heuristic regularization (pseudoinverse) that allows us to propagate the TDSE longer
in time. The S matrix is diagonalized S = UΣU† at each time step. Having obtained eigenval-
ues σ2

µ such that Σ = diag(σ2
1 , . . . , σ

2
P ), we define the pseudoinverse as S−1 ≈ U Σ̃−1U† with

Σ̃−1
µν =

1/σ2
µ

1+(λ2/σ2
µ)

6 δµν . We heuristically find that such smooth cutoff is superior to traditional

pseudoinverses when using adaptive integrators for updating parameters α.

We employ Hamiltonian Monte Carlo (HMC) [38, 39] to estimate Hilbert space averages in Eq. 2 at
each time step t. We make this choice because HMC offers a systematic way of making large steps
in MCMC proposals while still keeping acceptance probabilities high. This results in a Markov
chain with considerably lower autocorrelation times.

For a generic probability distribution p(θ), HMC augments the configuration space with artificial
momentum variables π = (π1, . . . , πN ). Hamiltonian dynamics in the resulting 2N -dimensional
space conserves energy (probability). Monte Carlo updates can be defined through numerical in-
tegration of Hamilton’s equations. Given initial conditions θ(0), π(0) and a small step size, a
common choice is the symplectic leapfrog integrator [38, 37] because it conserves energy (proba-
bility) exactly, allowing for large jumps in the θ-space while keeping high acceptance probabilities.
Randomness is injected by sampling the normal distribution π(0) ∼ N (0,M). Due to the space
limitation, we refer interested readers to the excellent review of HMC in Ref. [39].

We use the CNN architecture [40, 41] to model ψα(θ), similar to Refs. [17, 42] and employ au-
tomatic differentiation (AD) techniques to obtain all derivatives Oµ in Eqs. 2. We concatenate
h0 = {(cosnθk, sinnθk) | n = 1, . . . ,K} along the input channel axis (Fig. 1) to enforce periodic-
ity in θ. We choose a simple 2-layer CNN model to control the number of parameters P . In addition
nontrivially affecting the QGT inverse, the diagonalization cost grows as O(P 3). Heuristically, in-
troducing more parameters α requires more Monte Carlo samples to correctly resolve the averages
in Eq. 2 and does not significantly contribute to simulation accuracy in our case.

3



10 3 10 2 10 1 100 101

Jt

0.0

0.2

0.4

0.6

0.8

1.0

F(
t)

4 6 8 10
gf

5

10

15

20 E / J
( J 1/2) 1

gi = 3.0 ; gf =
3.75
4.50
5.25
6.00

6.75
7.50
8.25

9.00
9.75
10.50

0.0

0.1

0.2

0.3

R
2 (

t)

1D system, N = 64
g=4.4
g=5.6

g=6.8
g=8.0

0.6

0.4

0.2

0.0

p(
t)

/J

TEBD

0 1 2 3 4
Jt

0.0

0.5

1.0

F(
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.4

5.6

6.8

8.0

g

2D system, N = 4 × 4

0.0 0.5 1.0 1.5 2.0
Jt

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Jt

4.4

5.6

6.8

8.0

g

= max

100 101 102 103 104 105

101 102 103 104
PMPS/PCNN

Figure 3: Fidelity and vorticity as functions of time. Left: Time-dependent many-body Loschmidt
echo F (t) for a number of quenches. Right: One- and two-dimensional benchmarks on a chain with
N = 64 rotors and 4× 4 lattice (respectively) with open boundary conditions.

3 Results

We simulate the effects instantaneous quenches – we approximate a ground state of the Hamiltonian
in Eq. 1 using standard VMC methods and then preform time evolution under a different value of
g. In Fig. 2, we choose a square 8× 8 lattice, tracking the dynamics of the potential energy density
ϵp(t) = − J

N

∑
⟨k,l⟩ ⟨n̂k · n̂l⟩t and the average magnetization magnitude M(t) = 1

N ⟨|
∑
k n̂k|⟩t.

Averages ⟨·⟩t are performed with respect to the trial state at time t.

These observables were chosen as a proxy for thermalization. Across a wide range of quenches
we observe convergence to their respective equilibrium values at g = gf , see Fig. 2. We observe
two dynamical regimes in relation to the quantum critical point gc ≈ 4.25, when gi < gc. For
small quenches (left column of Fig. 2) we see slower equilibriation with only fluctuations around
the magnetization direction. For moderate to large quenches in Fig. 2, we observe a (transient)
demagnetization of the sample and convergence to a new equilibrium state.

One also has access to global observables such as the Loschmidt echo with applications in the
context of dynamical phase transitions [43] and quantum chaos [44]. It is defined as the (normalized)
overlap F (t) = |⟨Ψ(0)|Ψ(t)⟩|2. Following Refs. [45, 46], we evaluate Monte Carlo estimators of
F (t). Expectedly, we find that that F decays with time, (see Fig. 3, left panel). For smaller quenches,
the fidelity shoots back up to a nonzero value suggesting a finite overlap between the initial state
the long time "equilibrium" state after the quench. The latter may be interpreted as a signature of
quenching between two Hamiltonians in the ordered phase.

We introduce another time scale τ1/2 defined as the time needed for the fidelity to decrease by 50%.
We observe that τ1/2 increases linearly with the quench gf . This result matches basic estimates
given by the uncertainty relation ∆E∆t ≥ 1/2. Therefore, fidelity decay time can be lower bounded
by ∆E−1, estimated using samples from the initial state ψα(0) [47]. The comparison in Fig. 3
(left, inset) demonstrates that the t-VMC method can be used to estimate quantities of experimental
interest for system sizes unreachable by other wavefunction methods.

We compare our results to tensor-network time-evolving block decimation (TEBD) [48, 49] simula-
tions for a one- and two-dimensional versions of the model. For all benchmarks, states were initial-
ized to the coherent superposition of all basis states |ψ(0)⟩ ∝

∫
dθ |θ⟩. Following Refs. [17, 50], we

use r(t) = D(ψ(t+δt),e−iHδt ψ(t))/D(ψ(t),e−iHδt ψ(t)) as a figure of merit where D(·, ·) is the Fubini-
Study distance on the Hilbert space H. Intuitively, r2(t) measures an appropriately normalized
measure of deviation between the full state e−iHδt |ψ(t)⟩ after one time step δt and its projection∣∣ψα(t+δt)〉. We plot the integrated error R2(t) =

∫ t
0
r2(s) ds as an upper bound on the square of the

integrated error R(t) =
∫ t
0
r(s) ds due to the triangle inequality.

In Fig. 3 (right), we show that this algorithm performs well on a one-dimensional system of N =
64 rotors where the growth of the so-called bond dimension χ is limited. The integrated residual
R2(t) grows more rapidly for lower values of g because the initial state ψ(0) representing a more
typical state in the disordered phase. In contrast to the 1D case, we observe that the TEBD method
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exponentially grows the MPS bond dimension χ past the cutoff χmax = 1000 at relatively short
times. We see qualitative agreement between the two methods for early times, before χ grows to the
point where further simulation is numerically prohibitively expensive.

Overall, both t-VMC and TEBD algorithms predict similar dynamical behavior where the compari-
son is possible. However, the number of parameters in the MPS grows exponentially due to entropy
build-up, blocking tensor-network algorithms [51–53, 12] from scaling to higher dimsnsions and
longer times. Continuous degrees of freedom amplify the problem due to infinite local basis.

4 Conclusion

We present a method to approximate unitary dynamics of continuous-variable quantum many-body
systems, based on custom neural-network quantum states. The approach employs Hamiltonian
Monte Carlo sampling and custom regularization of the quantum geometric tensor. Our calcula-
tions are able to access nontrivial local and global observables. Good agreement was found with
tensor-network-based TEBD simulations for the case of one-dimensional systems of comparable
size. Our approach paves the way for accurate non-equilibrium simulations of continuous systems
at previously unexplored system sizes and evolution times, bridging the gap between simulation and
experiment.
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Software libraries

The code used in this work has been packaged into an installable library and is (anonymously) avail-
able to reproduce any results in this work or explore new ones: github.com/Matematija/continuous-
vmc.

It was built on JAX [54] for array manipulations, automatic differentiation for sampling and op-
timization and GPU support, Flax [55] for neural-network construction and manipulation and
NumPy [56] and SciPy [57] for CPU array manipulations. Matplotlib [58] was used to produce
figures.
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