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Abstract

This work proposes an incremental learning algorithm for physics-informed neural
networks (PINNs), which have recently become a powerful tool for solving partial
differential equations (PDEs). As demonstrated herein, by developing incremental
PINNs (iPINNs) we can effectively mitigate training challenges associated with
PINNs loss landscape optimization and learn multiple tasks (equations) sequentially
without additional parameters for new tasks. Interestingly, we show that this also
improves performance for every equation in the sequence. The approach is based
on creating its own subnetwork for each PDE and allowing each subnetwork to
overlap with previously learned subnetworks. We also show that iPINNs achieve
lower prediction error than regular PINNs for two different scenarios: (1) learning
a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting
from a combination of processes (e.g., 1-D reaction-diffusion PDE). The code
implementation of the work is available at https://github.com/adekhovich/
incremental_PINNs.

1 Introduction

Deep neural networks (DNNs) play a central role in scientific machine learning (SciML). Recent
advances in neural networks find applications in real-life problems in physics [1, 2, 3, 4], medicine
[5, 6, 7], finance [8, 9, 10, 11], and engineering [12, 13, 14, 15]. In particular, they are also applied
to solve Partial Differential Equations (PDEs) [16, 17, 18, 19]. Consider the following PDE,

F [u(x, t)] = f(x), x ∈ Ω, t ∈ (t0, T ], (1)
B[u(x, t)] = b(x), x ∈ ∂Ω, (2)
u(x, t0) = h(x), x ∈ Ω, (3)

where F is a differential operator, B is a boundary condition operator, h(x) is an initial condition,
and Ω is a bounded domain. Physics-informed neural networks (PINNs)[19] incorporate initial and
boundary conditions as soft constraints into the loss function of a DNN. Let us denote the output
of the network N with learnable parameters θ as û(θ,x, t) = N (θ;x, t). Then sampling the set of
collocation points, i.e. a set of points in the domain, CP = {(xi, ti) : xi ∈ int Ω, ti ∈ (t0, T ], i =
1, 2, . . . NF}, the set of initial points IP = {(xj , t0) : x

j ∈ ∂Ω, j = 1, 2, . . . , Nu0
} and the set

of boundary points BP = {(xk, tk) : xk ∈ ∂Ω, tk ∈ (t0, T ], k = 1, 2, . . . , Nb} one can write the
optimization problem and loss function arising from PINNs as follows:
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L(θ) = LF (θ) + Lu0
(θ) + Lb(θ)→ min

θ
, (4)

LF (θ) =
1

NF

NF∑
i=1

∣∣∣∣F [û(θ, xi, ti)]− f(xi)
∣∣∣∣2, (xi, ti) ∈ CP, (5)

Lu0
(θ) =

1

Nu0

Nu0∑
j=1

∣∣∣∣û(θ, xj , t0)− h(xj)
∣∣∣∣2, (xj , t0) ∈ IP, (6)

Lb(θ) =
1

Nb

Nb∑
k=1

∣∣∣∣B[û(θ, xk, tk)]− b(xk)
∣∣∣∣2, (xk, tk) ∈ BP. (7)

However, sometimes PINNs struggle to learn the ODE/PDE dynamics [20, 21, 22, 23]. Wight &
Zhao [24] proposed several techniques to improve the optimization process compared to the original
formulation: mini-batch optimization and adaptive sampling of collocation points. Krishnapriyan
et al. [21] proposed the seq2seq approach that splits the domain into smaller subdomains in time
and learns the solution on each of the subdomains with a separate network. Thus, both adaptive
sampling in time and seq2seq are based on the idea of splitting the domain into multiple subdomains,
on which solutions can be learned more easily. As explained in [22], improving PINN’s solutions
by considering small subdomains is possible because the loss residuals (LF term) can be trivially
minimized in the vicinity of fixed points, despite corresponding to nonphysical system dynamics that
do not satisfy the initial conditions. Therefore, the reduction of the domain improves the convergence
of the optimization problem (4) and helps to escape nonphysical solutions.

Despite the popularity of PINNs in physical sciences [25, 26, 27], there is no incremental learning
procedure for PINNs. Thus, we propose incremental PINNs (iPINNs) – a strategy for training PINNs
incrementally, creating task-specific subnetwork for every PDE. Each subnetwork Ni has its own
set of parameters θi ⊂ θ, and the model is trained sequentially on different tasks. A subnetwork
for a new task can overlap with all previous subnetworks, which helps to assimilate the new task.
As a result, the network consists of overlapping subnetworks, while the free parameters can be
used for future tasks. The network uses pretrained parts (subnetworks) to find and train the next
(possibly overlapping) subnetwork that cannot be learned well with regular PINN. To the best of our
knowledge, this is the first example where one network can sequentially learn multiple equations
without extending its architecture, with the added benefit that performance is significantly improved.

2 Problem formulation

We focus on two scenarios: (1) incremental PINNs learning, where the network sequentially learns
several equations from the same family; and (2) learning a combination of multiple equations that
create another physical process. To illustrate these cases, we consider one-dimensional convection
and reaction-diffusion problems with periodic boundary conditions.

Scenario 1: 1-D convection
equation

∂u

∂t
+ βk

∂u

∂x
= 0, (P1)

u(x, 0) = sinx,

u(0, t) = u(2π, t),

where t ∈ (0, 1], x ∈
[0, 2π], βk ∈ B ⊂ R.

Scenario 2: 1-D reaction-diffusion equation

∂u

∂t
− ν

∂2u

∂x2
− ρu(1− u) = 0, (P2)

u(x, 0) = e
− (x−π)2

2(π/4)2 ,

u(0, t) = u(2π, t),

where t ∈ (0, 1], x ∈ [0, 2π], ν, ρ > 0. This process
consists of two parts: reaction term (ν = 0): −ρu(1− u)

and diffusion term (ρ = 0): −ν ∂2u
∂x2 .

In the second scenario, we construct one task as the reaction, another one as the diffusion, and the
final one as the reaction-diffusion. We can change the order of the reaction tasks and diffusion tasks to
show the robustness of incremental learning. Considering these two problems, we want to show that
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better generalization can be achieved by pretraining the network with simpler related problems. In
the following section, we show how one network can incrementally learn different equations without
catastrophic forgetting.

3 Proposed method

An incremental learning method needs to be applicable to both types of problems P1 and P2. However,
these problems cannot be solved by one network with the same output head for every different task,
since Fi[u(x, t)] ̸= Fj [u(x, t)] for i ̸= j and x ∈ Ω, t ∈ [t0, T ]. Therefore, we propose iPINNs – an
incremental learning algorithm that focuses on learning task-specific subnetworks N1,N2, ...,Nk, ...
for each task k. The algorithm starts by creating the above-mentioned subnetworks. Here we use
an iterative pruning algorithm that is called NNrelief [28]. We select NNrelief because it achieves
the highest number of pruned parameters (connections) reported to date for different state-of-the-art
neural network architectures trained on MNIST, CIFAR-10/100 and Tiny-ImageNet.

Task 1

Available 
connections

Task 1 & Task 2

Task 2

Figure 1: An example of iPINNs with two PDEs.

The total loss and its gradient with respect to a parameter w can be written as:

L =

k∑
j=1

Lj , (8)

∂L
∂w

=

k∑
j=1

∂Lj

∂w
=

∑
j: w∈Nj

∂Lj

∂w
, (9)

because if w ̸∈ Nj , then ∂Lj

∂w = 0.

Algorithm 1 PINN incremental learning: adding new task k

Require: neural network N , training datasets D1,D2, . . . ,Dk−1 and Dk, training hyperparameters,
pruning hyperparameters (num_iters).

1: Nk ← N ▷ set full network as a subnetwork
2: Train N1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq. 9. ▷ training step
3: for it = 1, 2, . . . , num_iters do ▷ repeat pruning
4: Nk ← Pruning(Nk,Dk) ▷ pruning step
5: Retrain subnetworksN1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq. 9. ▷ retraining step
6: end for

An important concept in the proposed iPINN strategy is that the pruning method is used to train
task-specific subnetworks, but allowing the subnetworks to naturally overlap on some connections
(see Figure 1). This way the method provides knowledge sharing between the subnetworks. These
overlaps are updated with respect to all tasks that are assigned to a particular connection. Thus, for
every new task k that enters the network, we first find a corresponding subnetwork Nk with NNrelief
(line 4 of the Algorithm 1), then adapt the overlaps between previous subnetworksN1,N2, . . . ,Nk−1

and a new one Nk (line 5 of the Algorithm 1). The main advantage of the proposed approach is that
a neural network learns all tasks that were given during training and not only the last one. This is
achieved by constantly replaying old data. Data for previous tasks is easily available by sampling
collocation points, which eliminates all issues of data replaying for continual learning problems
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in computer vision and natural language processing tasks and makes the algorithm well-suited in
the context of PINNs. We want to emphasize that iPINN does not need to know how many tasks
will be given overall, and it has access only to those that were given up to task k inclusive, which
distinguishes it from multi-task learning. In the next section, we experimentally show that pretrained
parts of the network help to improve the convergence process.

4 Numerical experiments

Experiments setup. We use a four-layer neural network with 50 neurons per layer and select 1000
randomly collocation points on every time interval between 0 and 1 for LF . The Adam optimizer [29]
with a learning rate of 0.01 and 20000 epochs are used to train the model. We divide the learning rate
by 3 every 500 epochs in which the loss does not decrease. We repeat our experiments multiple times
with different random initializations of the network parameters and show the average values of error.
In addition, following continual learning literature [30], we compare backward transfer metrics. Let
us denote the test set as Dtest = {(xi, ti, l) : xi ∈ [0, 2π], ti ∈ [0, 1], l is the task-ID}, the solution
of the equation at the point (xi, ti, l) as ui

l,k = ui
l,k(x

i, ti), and ûi
l,k is a prediction of the model at

point (xi, ti, l) after task Dk is learned. The relative error is denoted as rl,k =
||ul−ûl,k||2

||ul||2 × 100%

as it is calculated for task l after task k is learned (l ≤ k). Backward Transfer is defined as
BWT = 1

k−1

∑k−1
l=1 rl,k − rl,l.

Table 1: Final relative error and forgetting after all
convection equations are learned.

regular PINN iPINN

β = 1 0.042% 0.074%

β = 10 0.222% 0.087%

β = 20 0.339% 0.288%

β = 30 3.957% 0.246%

β = 40 37.4% 1.139%

BWT N/A 0.0280%

1 2 3 4 5
Tasks Learned

1
10

20
30

40
0.030 0.062 0.055 0.082 0.074

0.076 0.087 0.083 0.087

0.244 0.116 0.288

0.233 0.246

1.139

1-D convection equation

0.0 0.2 0.4 0.6 0.8 1.0
Relative error (%)

Figure 2: Relative error history for convection
equations (α = 0.95). Every row shows the
error after a new task is learned.

Results. For the convection equation, we observe that by learning incrementally the sequence of
convection equations, we achieve much lower absolute and relative errors for the equations that are
more difficult to learn (β = 30, 40). In Table 1 we show final errors at the end of the training, and
Figure 2 shows the absolute error history for each equation. In this case, we observe some level of
forgetting, however, it is insignificant compared to the error values.

We also illustrate the effectiveness of the iPINN method by addressing problem P2. Results obtained
when first learning the reaction part (or vice-versa, the diffusion part) are shown in Table 2. The main
finding is that the network can learn every equation at least as well as when it is learned independently.
In fact, for the reaction equation, the neural network improves significantly the prediction error.
Another interesting observation is that the model learns the reaction-diffusion equation with almost
the same error, regardless of the order of the tasks. This gives us a hint about the robustness of the
algorithm to different task orders in terms of prediction error. In Figure 3, we present the portions of
the subnetworks that are occupied by each task. We will illustrate this by considering both orders –
when the model learns the reaction equation first (Figure 2a), and when diffusion comes first (Figure
2b). It is noteworthy that the percentage of parameters occupied by all tasks is very similar for
both orderings (31.8% and 31.5% respectively of all network parameters). On the other hand, the
percentages of used parameters for both cases are 79.5% and 79.3%. This means that the total number
of trained parameters for the two incremental procedures is the same for both cases, which shows the
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Table 2: Final relative error for ν = 4, ρ = 4
and two different orders.

equation regular PINN iPINN

reaction 3.68% 2.99%
diffusion 0.16% 0.19%

reaction-diffusion 0.70% 0.67%

diffusion 0.16% 0.12%
reaction 3.68% 1.97%

reaction-diffusion 0.70% 0.67%

reaction

diffusion

reaction-
diffusion

11.8%

5.25%

4.8%

9.2%

31.8%

12%

4.7%

(a) reaction → diffusion → reaction-diffusion.

diffusion

reaction

reaction-
diffusion

3.7%

11.3%

8.8%

8.5%

31.5%

9.5%

6%

(b) diffusion → reaction → reaction-diffusion.

Figure 3: Percentage of parameters used for ev-
ery equation with ρ = 4, ν = 4.

robustness of the method. Moreover, the network has about 20% of free connections to learn new
tasks.

5 Conclusion

In this work, we propose an incremental learning approach for PINNs where every task is presented
as a new PDE. Our algorithm is based on task-related subnetworks for every task obtained by iterative
pruning. To illustrate our idea, we consider two cases when incremental learning is applicable to
a sequence of PDEs. In the first case, we consider the family of convection PDEs, learning them
sequentially. In the second example, we consider the reaction-diffusion equation and learn firstly
the components of the process, namely reaction and diffusion, and only then the reaction-diffusion
equation. Our main goal is to show the possibility of incremental learning for PINNs without
significantly forgetting previous tasks. From our numerical experiments, the proposed algorithm can
learn all the given tasks, which is not possible with standard PINNs. Importantly, we also show that
future tasks are learned better because they can share connections trained from previous tasks, leading
to significantly better performance than if these tasks were learned independently. We demonstrate
that this stems from the transfer of knowledge occurring between subnetworks that are associated
with each task.
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