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Abstract

State-of-the-art galaxy formation simulations generate data within weeks or months.
Their results consist of a random sub-sample of possible galaxies with a fixed
number of stars. We propose a ML based method, GalacticFlow, that generalizes
such results. We use normalizing flows to learn the extended distribution function of
galaxies conditioned on global galactic parameters. GalacticFlow then provides
a continuized and condensed representation of the ensemble of galaxies in the data.
Thus, essentially compressing large amounts of explicit simulation data into a small
implicit generative model. Our model is able to evaluate any galaxy eDF given by
a set of global parameters and allows generating arbitrarily many stars from it. We
show that we can learn such a representation, embodying the entire mass range
from dwarf to Milky Way mass, from only 90 galaxies in ~ 18 hours on a single
RTX 2080Ti and generate a new galaxy of one million stars within a few seconds.

1 Motivation

In astrophysics, distribution functions (DFs) play a crucial role in modeling the properties and
behavior of galaxies. DFs provide a mathematical description to characterize the statistical properties
of the stars in a galaxy. In galactic dynamics, the DF, often denoted as f(x,v), describes the
probability of finding a star with specific phase space coordinates within the galaxy [1l]. They have
been widely used to describe the dynamics of collisionless systems such as galaxies via Boltzmann’s
equation [2]] and allow to calculate various properties, such as the mass, velocity dispersion, and
density profile via integration of the DF over different regions of phase space. Since galaxies typically
consist of various populations of stars with different properties, such as age or chemical composition
(metallicity) but similar orbit distributions the concept of extended DFs has been introduced [22].
Those eDFs combine the phase space distribution with additional stellar properties in order to model
their joint distribution and allow for more complex relations among stars from different populations.
In general, those eDFs can become quite complex especially for galaxies with a wide range of stellar
populations and complex dynamical histories such that they become analytically intractable. Here
we draw on the fact that ML concepts such as normalizing Flows (NFs) are able to describe such
complex DFs. Furthermore, automatic differentiation allows to easily compute gradients of the
approximated DFs enabling to feed the neural DFs into existing mathematical modelling frameworks
such as Boltzmann’s equation. Normalizing
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Figure 1: Overview of the GalacticFlow network. We use global galaxy properties p; as input
conditions @ to the conditional normalizing flow (cNF), p(¢, ©o|0), to generate extended distribution
functions (eDFs) pg (¢, @) of galaxies. Where ¢ denotes the phase space coordinates and zo the
additional stellar quantities like age and metallicity.

2 Related Work: Normalizing flows in astrophysics

NFs are a machine learning (ML) tool, that allows to learn complex, high-dimensional, multi-modal
probability distribution functions (pdf) from given data points x; € R"™. Besides their study in
probabilistic ML and application to many general tasks, such as image generation, they have recently
been found useful in a wide range of physics problems. Particularly in astrophysics, they are used to
model the phase space density of stars and infer the Galactic dark matter density and gravitational
potential via Boltzmann’s equation [6} [14]. [8] applied NFs to describe the color-magnitude diagram
of the Gaia data, and [21]] used conditional NF models (cNFs) to model quasar continua while [23]]
used them to model the element distribution of stars. Here we go one step further and not only learn the
6d phase space density of stars, but their 10d eDF that further covers age, metallicity, and oxygen/iron
abundance. We describe galactic DFs via NFs that are trained on state-of-the-art simulations of
galaxy formation to directly learn the stellar eDFs from high quality data. In particular, we use cNFs
to describe the eDFs conditioned on global galaxy properties such as total stellar mass, average
meatallicity or star formation history, that provide additional contextual information when sampling.
As such, we describe a population of galactic DFs with a single cNF model, illustrated in Fig.
The idea behind GalacticFlow is based on the fact that galaxy morphology is linked to underlying
physical parameters via various scaling relations, most famously, the Mass-Metallicity [13} 24],
Tully-Fisher [25] and Faber-Jackson relation [12]]. Furthermore, galaxies grow hierarchically, i.e. by
merging with others, resulting in older galaxies being heavier and more elliptical, while younger
galaxies are lighter and more spiral-like giving rise to the famous Hubble sequence [16]. Learning
these different DFs with a NF promises a compressed model, that allows generating arbitrarily many
stars from exact DFs of arbitrary galaxies in very short times. In comparison to other generative
models, this further allows direct evaluations of those DFs.

3 Method

A normalizing flow constructs a diffeomorphism f~1, such that y, = f~! (z;) follows a simple
base distribution [e.g. a gaussian[18] 20]. The change of variable theorem relates f~! to the data’s
modeled pdf via: logp () = logp’ (f~' (x)) + log ‘Jf—l (x)|, where p’ is the prior distribution
in y-space. To find f~1, that yields Gaussian distributed y-values, one sets p’ = A(0,1) and
maximizes £ = log p (x), the mean log likelihood of the data. This is equivalent to minimizing the
Kullback—Leibler divergence of pi,e from p [20]. After training, we obtain an exact modeled pdf
and are able to generate arbitrarily large samples by drawing y ~ N(0, 1) and applying f. f~!is
composed of several functions f; Lo, f! that use the chain rule to compute log p (). These
functions can be chosen as simple parametric functions, e.g. splines, with neural networks (NNs)
determining their parameters individually per data point. Coupling layers [e.g.[9,|10], maintain the
first half of dimensions and input them into NNs 2for the transformation’s parameters of the second
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Figure 2: Corner plot of the 10D stellar parameter space. The diagonal shows a Gaussian KDE of the
respective marginal distribution with data from the validation set in blue and model in orange. The
off-diagonal shows 2D histograms of ground truth data in the bottom left corner and the corresponding
GalacticFlow model the top right corner. Note that the images for the samples we have flipped x
and y axis to have the same orientation as the data, for better comparison. They then share the same
axis and the same histogram grid with the respective data plot.

half. This is followed by a permutation of the dimensions and repeated several times and satisfies the
requirements of a diffeomorphism with efficiently computeable inverse and Jacobian determinant.

3.1 Model architecture

Our NF architecture uses very flexible rational-quadratic spline coupling layers alternating
with invertible 1 x 1 convolutions as generalized permutations as presented by [[T1]]. We also
adapt "double coupling layers", as used by which transforms the second half of dimensions
with parameters determined from the first half followed by a transformation of the first half with
the new second half. This choice enables both forward (f~!) and backward (f) transformations
in a single pass through the NNs, contrasting with auto-regressive methods. This allows training
and sampling to be fast at the same time. This base NF can easily be expanded to learn conditional
pdfs. To achieve this, we follow [23] and input conditional values into a second NN and multiply
the outputs of both networks to determine the transformation parameters. These conditional values
must be provided for every point in the training set and as necessary additional information for each
sample drawn. We choose 14 flow layers (convolution layer followed by coupling layer), K = 10
spline bins per coupling layer and 3 hidden layers with each 128 neurons for the coupling layer NNs.
In our tests we found this architecture to be working best, as smaller models struggled to fit the data
while larger models were over fitting. However, we did not perform extensive cross-testing of all
hyper-parameters. Our final cNF model operates on 10D data and employs a 4D condition space that
we describe further below. With this architecture the model has about 3 - 10 trainable parameters,
taking about 11MB of disk space.



3.2 Training

To demonstrate our model, we train a GalacticFlow model on simulation data from the NIHAO
project [315)126] that models 95 galaxies from dwarf galaxy to the Milky Way mass scale. From this
simulation suite we extract for each galaxy the 10 dimensional joint distribution of stellar position
x, velocity v, total metallicity Z, iron and oxygen abundance [Fe/H], [O/Fe] and stellar age 7.
Additionally, we record easy to observe galactic properties such as total stellar mass M,, median
stellar age 750, the 10-th percentile stellar age 7o and the average stellar metallicity Z for each galaxy
to be used as input conditions to the cNF. We normalize the data to zero mean and unity standard
deviation. Total stellar mass is transformed to log space before normalizing, for a more natural
spacing. The inverse of this transformation needs to be applied after sampling and the Jacobian needs
to be respected in case of pdf evaluation. For training we use the RAdam optimizer [19] and an
exponential learning rate schedule with an initial learning rate of Ir = 9 - 10~° and a decrease of a
factor v = 0.998 every 10 and once the learning rate falls below 3 - 10~6, every 120 optimisation
steps. We train 20 different models, where in each model 5 randomly chosen galaxies are left out
from the training data and remain reserved for validation only. Using a batch size of 1024, we train
for 10 epochs on a single RTX 2080T1i, which takes about 18 hours of wall clock time. Drawing a
sample from this flow takes about 3.5s per GPU per million stars, in the limit of large sample sizes.

4 GalacticFlow: Learning a generalized generative model for galaxies

We evaluate the the quality of the GalacticFlow
model by comparing 100 generated galaxy sam-
ples with their ground truth data from the valida- ~ 3{ O
tion set. In this way we can judge how the model 304
performs in providing a generalized representation
that interpolates in galactic parameter space. A
"generated galaxy" in this context refers to a sam- £ 20
ple from the flow with conditions matching those
of a ground truth galaxy, including the same num-
ber of stars. It is vital to note, that we neither 104
expect nor intend a perfect agreement between a
GalacticFlow model and a real galaxy. After =
all, each galaxy possesses a unique merger history S - Y < : = ? ]
and distinctive characteristics that cannot cannot Alog Myers

be generalized with only 4 conditions. Thus, our
objective with GalacticFlow is to capture gen- : .
eral trends in galactic eDFs rather than memoriz- VS- difference in log stellar mass Alog Miars
ing individual formation histories. An overly close Petween GalacticFLow models and data galax-
agreement would only be possible on an over-fitted 1€ (orange points) and corresponding ground
training galaxy. In Fig. 2] we show a qualitative truth galaxies and data galaxies (contours).
comparison of one example galaxy from the validation set with its GalacticFlow model in a corner
plot. The agreement of model and data can be deemed quite good. GalacticFlow demonstrates
the capacity to interpolate and generate realistic galaxies for parameter sets not seen during training.
Across the entire mass range, it successfully captures various shapes of stellar eDFs. However, some
challenges are evident in reproducing sharp peaks, which may relate to the naive sampling procedure
[7]. We anticipate that model quality and its ability to recognize trends will improve considerably
with a more diverse training set. Finding a metric to quantitatively evaluate the performance of our
model is challenging, as we need a sample-based difference measure between two 10D distributions.
In the spirit of our model we also require the metric to measure ’physical closeness’, at least in a
sense that, e.g., galaxies of similar mass are deemed close. We choose to employ linear maximum
mean discrepancy [MMD [15]] as we found it to fulfill these requests. We generate a sample of an
unseen galaxy and compute the linear MMD to all 90 data galaxies, recording the difference in log
stellar mass A log M¢a,s between model and data galaxy. We repeat this process for all 5 unseen
galaxies of all 20 models, to calculate a relation of statistical distance as a function of A log M., as
shown in Fig.[3] This relation enables us to evaluate the quality of generalization and the recognition
of general, known trends by the model. We show here MMD vs. A log M, as stellar mass is a
primary condition and a key predictor of galaxy morphology. The clear trend of increasing MMD
with increasing magnitude of Alog My.,s and the statistical similarity between model and data
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Figure 3: Linear maximum mean discrepancy



(points vs. contours) indicates that GalacticFlow eDFs align well with those of real galaxies of
similar mass. Thus, the model effectively learns a meaningful generalization of galactic parameter
space.

5 Conclusion

We find that GalacticFlow can learn a generalized representation of galaxies with conditional
normalizing flows, that captures and respects the underlying galactic parameter space very well and
interpolates it nicely. After a moderate training time (~ 18h), we obtain a compact generative model
(3 - 106 trainable parameters, ~ 11MB), that allows to generate realistic galaxies in any desired size
for any desired set of galactic parameters in short times (3.5s per GPU per million stars).

Our code is publicly available on GitHulﬂ and the galaxy data can be found on Zenod(ﬂ This
includes our algorithms for pre-processing the data as well as the source code for the cNF. The code is
documented and can easily adapted for reuse. Furthermore we provide a user friendly API for loading
our pre-trained models, training your own models and generating/sampling galaxies as desired.

Broader impact statement

The authors are not aware of any immediate ethical or societal implications of this work. This
work purely aims to aid scientific modelling and proposes to apply normalizing flows to learn the
distribution function of stars in galaxies. Thinking more broadly, the concept of GalacticFlow is to
extract and interpolate high-dimensional data from spares simulation results to facilitate faster and
more versatile modelling. This might help to recognize how much information is already contained
in legacy data that can be made accessible for better modelling and as such help to save energy by
running less expensive simulations.
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