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Abstract

Emerging findings in the physical sciences frequently present new avenues for AI
applications that can enhance its efficiency or broaden its scope. We show such a
case in the field of quantum optics. Here, we present a method that can represent
quantum optics experiments as abstract weighted graphs, converting problems
that encompass both continuous and discrete elements into purely continuous
optimization tasks. This allows efficient use of both gradient-based and neural
network methods, circumventing the need for workarounds due to the discrete
nature of the problems. The new representation not only simplifies the design
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process but also facilitates a deeper understanding and interpretation of strategies
derived from neural networks.

1 Introduction

Designing experiments in quantum optics poses significant challenges due to its inherent complexity.
The vast majority of experiments have historically been designed by experienced human researchers[1,
2]. However, recent years have seen a surge in using advanced computational and machine-learning
techniques to assist in both designing and interpreting new quantum optics experiments [3, 4, 5, 6, 7,
8, 9, 10]. The design complexity stems from balancing discrete and continuous elements, involving
tasks such as determining the discrete quantum optics network topology and optimizing continuous
parameters like laser power or beam splitter reflectivity.

Here, we explore how new theoretical inventions from quantum optics and graph theory [11, 12, 13]
can significantly enhance AI methods in quantum optics research. We show a way to transform a
problem mixing both continuous and discrete elements into one that’s purely continuous. This change
not only simplifies the problem but also unlocks the potential for applying AI techniques directly. For
instance, gradient-based designs, previously challenging, are now feasible. Furthermore, while neural
networks once needed specialized architectures or workarounds like one-hot-encoding, they can now
directly leverage the continuous representation. Our findings underscore the value of integrating
domain knowledge into AI frameworks, opening a collaborative frontier for physical scientists.

2 Quantum Graph Photonics
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Figure 1: Bridge between quantum experiments and graph theory. In this example, the resulting
quantum state is a coherent superposition of the two perfect matchings in the graph. By equalizing
and normalizing the weights, we achieve a four-particle Greenberger-Horne-Zeilinger (GHZ) state.

The core insight is that many quantum optics experiments (using nonlinear pair-sources, single photon
sources, liner optics, etc.) can be represented in an abstract way as colored, edge-weighted graphs, as
illustrated in Fig.1. The vertices of the graph are photon paths to the detectors, and the edges stand for
photon correlations with their amplitude given by the edge’s weight. The color of the edge represents
the mode such as the degree of freedom of a photon (or quantum state) of the correlations. The
information of the experiment itself is then stored in the weights of the graphs. Likewise, each graph
can be translated back to a concrete quantum experiment that can be implemented in the laboratory,
which is very useful for real-world quantum optics experiments [14, 15, 16]. The graph contains
information on both the experimental setup and the resulting quantum state, given by the weight
function [8]:

Φ(ω) =
∑
m

1

m!

 ∑
e∈E(G)

ω(e)x†(e)y†(e) + h.c.

m

, (1)

where E(G) is the set of edges of the graph. The term h.c. stands for hermitian conjugate, which
includes annihilation operators. The quantum state is obtained by applying the weight function to
the vacuum, i.e. |ψ⟩ = Φ(ω)|vac⟩. We show an abstract graph which can produce GHZ states, as
an example in Fig. 1. In this case, ω = (ω0,0
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|ωi,j
x,y| < 1, the superscript and subscript represent the mode number and the optical path, respectively.

Conditioned on one photon in each detector (a common technique in quantum optics), the resulting
state is a coherent superposition of all the weighted perfect matchings in the graph. The weight of
a perfect matching is the product of all its edge weights. A perfect matching is defined as a subset
of edges that includes every vertex exactly once. In this scenario, each vertex inherits a color from
the colored edge, defining the state of each photon. This representation extends beyond describing
quantum states by employing the Choi–Jamiołkowski isomorphism [17, 18], where a graph can also
characterize quantum networks and measurement protocols.

The underlying physical reason for this efficient representation is the insight that in large fraction
of photonic quantum optics, the pure purpose of optical elements is to reshuffle fundamental pair-
correlations between photons [19]. These pair-correlations (or higher order correlations [20]) are
generated in nonlinear processes, and reshuffled by optical elements. A graph, therefore, depicts these
correlations, enabling a direct description of the experiment’s final state, which is implementable
experimentally [21, 14, 15, 16] and is different from the graph states used for quantum computation
[22]. With this representation, one can find new multi-photon quantum interference phenomenon
[12] which has been experimentally demonstrated [14, 15] and inspired a very large-scale integrated
optics experimental effort [16].

3 AI-Driven Discovery

3.1 Gradient-based discovery

For designing a new quantum optics experiment, we can directly use the graph-representation
described above as outlined in Fig. 2 (a). The graph, parameterized by the weights ωi, leads to the
quantum state (or quantum network or quantum measurement protocol). From this, we can build
loss functions in terms of the weights of the graph L(ωi). For instance, if the goal is to design an
experiment for a specific quantum state, the loss function could be the state’s fidelity, parameterized
by ωi. Similar fidelity functions can be applied for quantum networks and quantum measurements.
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Figure 2: Gradient-based discovery. (a), The design workflow. The Instruction Set file details what
we want (e.g., a quantum state) and instructions about the loss function and optimization details.
Based on the task in the instruction file, one can impose topological constraints in the initial graph.
(b), An entirely new way for performing quantum entanglement swapping (entangling photons that
never interacted [23]), a core principle of quantum networks. (c), Efficient blueprint for the generation
of 5-photon NOON states, which are at the core of highly sensitive quantum measurements [24, 25].
The square and diamond in the graph represent the ancillas and negative amplitude, respectively.
(d), Quantum measurement for a quantum communication task with quantum advantage (e.g., Mean
King’s Problem [26]). The incoming refers to the triangle in the graph. (e), A heralded Fredkin gate
acting on a target input where one qubit is set to mode zero.
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The design of the experiment has become a continuous, high-dimensional optimization problem,
which can be solved by gradient-based algorithms such as the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [27]. In reality, we are not only interested in a solution to the question, but in
simple solutions. For that reason, our algorithm iteratively performs continuous optimization and
edge pruning (i.e. removing edges), until the graph cannot be simplified any further. In many cases,
the resulting solution contains only a small number of edges, which allows for physical interpretation
and understanding of the underlying solution. We’ve successfully applied our algorithm on more than
100 previously unsolved open questions in quantum optics, creating a broad catalog of designs that
can benefit areas such as quantum computing, communications, and sensing. Fig.2 (b)-(e) presents
four diverse examples of these solutions (found with one minute using a CPU Xeon Gold 6130 with
187 GiB RAM). In tasks with higher dimensions and more particles, precisely estimating the required
solution time is difficult due to greater complexity.

3.2 Neural-network-based design and interpretability
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Figure 3: Quantum Graph Deep Dreaming. (a), A feed-forward neural network is trained to predict
a property, e.g., fidelity, of a given random input setup represented by a graph. (b), In the deep
dreaming phase (inverse training), the network’s weights and biases are fixed, and the initial input
graph’s weights are updated iteratively to maximize the predictive output.

Here, we explore the application of neural-network-based design of quantum optics. We use a
technique invented in the field of computer vision called inception or deep dreaming [28]. The idea is
to train a neural network to predict the properties of a given structure (i.e. learns the structure-property
relation), see Fig.3 (a). After the training, the neural network’s weights and biases are frozen, and the
training is inverted, see Fig.3(b). Instead of inputting a structure (in our case, a graph), we modify the
structure such that the property is maximized. Deep dreaming has been applied in physics for various
tasks such as quantum entanglement spectra [29] or the arrow of time [30]. Recently, it has also been
used for design purposes in material science [31] and quantum circuits [32].

First, we demonstrate how we can design quantum states, such as the GHZ state, using a neural
network that works on the photonic graph representation. The neural network, composed of a input
layer of 24 neurons for all possible edge weights, four hidden layers (three with 400 neurons, one
with 10), and a single-neuron output layer, is trained on 20 million low-fidelity (below 0.5) examples.
After training the neural network to predict properties from the graphs, we then invert the network. As
shown in Fig.4(a), the state’s fidelity (the similarity between our target and the current value) increases
continuously during the training, as the activation of the output neuron increases. In Fig.4(b), we
observe how the distribution of 1000 random initial graphs (blue) is shifted towards high fidelity,
clearly indicating the ability for design of quantum optics experiments. It took one day to get the
trained neural network and results using a GPU (NVIDIA Volta V100 w/ 15 GB of HBM2 memory).

Having a neural network that can adapt arbitrary graphs towards a quantum system with specific
properties allows us to extract strategies learned by the machine learning model. Specifically, we
can start with particular graphs, and observe their evolution towards the final state. In Fig.4(c), it is
evident that the network has learned to generate disjoint perfect matchings of opposite colors, which
contribute the quantum state’s missing terms. In Fig.4(d), we pose a more challenging task: instead
of designing an experiment for a specific quantum state, we aim to find an experiment for a state with
a specific property, even when we are uncertain of what the best state might be. In this case, our target
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Figure 4: Results. (a), We show the evolution of an input graph’s fidelity respect to the GHZ state,
during the dreaming on the neural network. Intermediate steps of a random graph’s evolution to its
dreamed counterpart are displayed. (b), Distribution of initial vs. dreamed fidelity respect to GHZ
state. No trained initial graph has fidelity above 0.5. (c)-(d), Strategies from the inverse training
are explored, using specified inputs to optimize GHZ state fidelity (c) and the mean value of tr(ρ2M )
(d). Disjoint yellow-cycle graphs are generated in (c), and in (d), edge weights are modified for the
diagonal perfect matching, and new perfect matchings are created with specific weight contributions.

is the concurrence of the quantum state, a measure of multipartite quantum entanglement [33, 34].
Starting from a GHZ state (known to be highly entangled), we observe that the neural network creates
more new terms as the evolution continues, each with specific weight contributions. Surprisingly, the
concurrence of the resulting state is found to be significantly larger than that of the GHZ state. The
network gradually learns to recognize increasingly complicated structures, which could help us to
understand how the experiment works. Although it is a simulation at the moment, we expect to see
experiments in the next step as many computer-designed experiments have been done [35, 36, 37].

4 Outlook

We demonstrate how the theoretical understanding of quantum optics and quantum information can
enhance the use of AI in this field. Our work has led to the efficient design of more than 100 new
quantum optics experiments through a direct, gradient-based approach. Furthermore, we show how
neural-network-based optimization is directly applicable without modifying the network architectures.
This allows us to observe the internal strategies that the neural network learns to optimize and design
specific quantum states. One important follow-up question is to what extent we can expand the
physical graph-based representation to include even more experimental technologies, enabling highly
efficient, purely gradient-based, and neural-network-based optimization. For example, the frequency
of photons [38, 39] can be mapped by discretization or a more continuous function on the edges.
Complex photon number distributions [24, 40] will allow for AI-based design of experiments for
advanced sensing experiments. Recent insights into quantum computing circuits have demonstrated a
very related representation based on information flow graphs in circuits [41], which could inspire an
extension to AI-based applications in quantum computing.

In conclusion, our findings emphasize the crucial role of integrating physical science insights into AI
applications, whether it’s through recognizing physical symmetries or understanding the underlying
representation of physical data.
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