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Abstract

We introduce a new amortized likelihood ratio estimator for likelihood-free
simulation-based inference (SBI). Our estimator is simple to train and estimates the
likelihood ratio using a single forward pass of the neural estimator. Our approach
directly computes the likelihood ratio between two competing parameter sets which
is different from the previous approach of comparing two neural network output
values. We refer to our model as the direct neural ratio estimator (DNRE). As part
of introducing the DNRE, we derive a corresponding Monte Carlo estimate of the
posterior. We benchmark our new ratio estimator and compare to previous ratio
estimators in the literature. We show that our new ratio estimator often outperforms
these previous approaches. As a further contribution, we introduce a new derivative
estimator for likelihood ratio estimators that enables us to compare likelihood-free
Hamiltonian Monte Carlo (HMC) with random-walk Metropolis-Hastings (MH).
We show that HMC is equally competitive, which has not been previously shown.
Finally, we include a novel real-world application of SBI by using our neural ratio
estimator to design a quadcopter.

1 Introduction

In many scientific applications we rely on complex simulators to provide us with a set of observations,
x, for a corresponding set of parameters, θ. Common examples range from simulating Computational
Fluid Dynamics (or CFD), to flight simulators and computational biology. This paradigm is often
referred to as simulation-based inference (SBI) [1]. An objective of SBI is to perform Bayesian
inference to learn the posterior over the parameters of a simulator, where all solutions require account-
ing for a lack of an analytical likelihood. They revolve around Bayes’ rule and the corresponding
Bayesian inference approaches that currently exist in the literature. There exists multiple neural-based
approaches such as Neural Posterior Estimation [2], Neural Likelihood Estimation (NLE) [3], and
Neural Ratio Estimation (NRE) [4]. NRE is closely tied to MCMC in that it is used to estimate the
ratio in the MH step. While there have been many papers that have focused on comparison between
all aforementioned approaches, including their sequential and amortized variants (e.g. Lueckmann
et al. [5]), the focus of this paper is to explore within the existing range of neural ratio estimators.

Contributions. In this workshop paper we build on the work of [6, 7, 8] by introducing a new
amortized neural likelihood ratio estimator that directly computes the likelihood ratio between two
sets of parameters and only requires a single pass through the network to achieve this estimation. We
derive a corresponding new Monte Carlo estimate of the posterior distribution when using DNRE.
We also introduce a new gradient estimator that can be applied to both our approach and previous
approaches. This gradient estimator is more numerically stable than the previous one. We benchmark
DNRE along with the baselines both with and without HMC on standard SBI tasks showing that
DNRE can often outperform the baselines. These experiments also show likelihood-free HMC to be
competitive, which has not been previously shown. Our final contribution is the introduction of a
novel design example for quadcopters.
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2 Preliminaries

We start with the derivation of the the likelihood-to-evidence ratio [7, 6]:

r(x|θ) = d∗(x,θ)

1− d∗(x,θ)
=

p(x,θ)

p(x)p(θ)
=

p(x|θ)
p(x)

, (1)

where d∗(x,θ) is the optimal decision function that distinguishes between two independent samples,
{x,θ} ∼ p(x)p(θ), and samples from the joint, {x,θ} ∼ p(x,θ). To learn this classifier, Hermans
et al. [6] train a neural network by sampling two independent θ’s from the prior, {θ,θ′}, and simulate
x according to p(x|θ). The parameterized classifier is then trained using a binary cross entropy loss
whereby the samples from the joint, (x,θ) are given the label 1 and the independent samples, (x,θ′),
are given the label 0. The output of the network is an estimate of the log ratio, log r̂.

Once learned, the likelihood-to-evidence ratio estimator is used to estimate the posterior by multiply-
ing the ratio by the prior, p(θ|x) ≈ r̂(x|θ)p(θ). However, to estimate the likelihood ratio between
two competing observations, p(x|θ)/p(x|θ′), one needs to apply two forward passes through the
network with two sets of parameters to get r(x|θ,θ′) = r(x|θ)/r(x|θ′). This form can then be used
to perform likelihood-free MCMC by replacing the likelihood ratio inside the MH acceptance step.

3 DNRE: Direct Amortized Neural Likelihood Ratio Estimation

In this section we present our approach of Direct Amortized Neural Likelihood Ratio Estimation
(DNRE), which directly parameterizes the classifier with the two parameter pairs, θ and θ′, as
d(x,θ,θ′). As a result we introduce the new optimal classifier, d∗ as follows:

d∗(x,θ,θ′) =
p(x,θ)p(θ′)

p(x,θ)p(θ′) + p(x,θ′)p(θ)
=

p(x|θ)
p(x|θ) + p(x|θ′)

, (2)

which leads to the new direct amortized likelihood estimator:

r(x|θ,θ′) =
d∗(x,θ,θ′)

1− d∗(x,θ,θ′)
=

p(x|θ)
p(x|θ′)

. (3)

An advantage of this approach is the additional information provided to the classifier for label y = 0.
This is when the denominator, p(x|θ′), must be greater than the numerator, p(x|θ). We force this
relationship to be the case by swapping θ and θ′ such that the parameter in the denominator becomes
the one that generated the observation x. This is compared to learning to distinguish between the
joint distribution and independent samples which will result in a softer decision boundary for the
classifier to learn. A key difference when using DNRE, compared to the original NRE is that DNRE
takes three inputs (x,θ,θ′), instead of the two. We ensure that the order is consistent while training
using the binary cross entropy loss. In our case we assign the ordered triplet (x,θ,θ′) a label 1, and
swap θ and θ′ for the label 0. We highlight that by explicitly incorporating both sets of parameters
we aim to learn the optimal direct likelihood ratio estimator r(x|θ,θ′) in Equation (3).

3.1 Monte Carlo Posterior Approximation

Unlike the likelihood-to-evidence ratio proposed in Equation (1), DNRE requires Monte Carlo
sampling to approximate the posterior. We achieve this by integrating out the θ′ in the denominator
numerically, using M samples. This requires an inverse trick that we derive in the log-space:

log p(θ|x) ≈ −logSumExp
{
− log r̂(x|θ,θ′

i))
}
+ logM + log p(θ).

For higher-dimensional θ′ this is computationally intractable, but for smaller dimensional problems
we can use this form to compare posteriors in a manner consistent with previous approaches within the
literature. In the longer version of this work, (anon.), we have shown this Monte Carlo approximation
to be useful and accurate.

3.2 Likelihood-free Hamiltonian Monte Carlo

HMC is a gradient-based Markov chain Monte Carlo sampling scheme that augments the original
parameter space with additional momentum parameters, m, in order to sample using Hamiltonian
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dynamics [9, 10]. HMC defines the potential energy function as U(θ) = − log[p(x|θ)p(θ)] and
the kinetic energy function as K(m) = m⊤m/2. The two requirements of running an HMC
algorithms are access to ∇U(θ) and access to the MH acceptance step of ρ = min(0,−U(θ∗) +
U(θ) −K(m∗) +K(m)), where θ∗ and m∗ are the proposed parameter and momenta pair. For
NRE and BNRE, ρ is derived from two passes through the estimator such that −U(θ∗) + U(θ) =
log r(x|θ∗) − log r(x|θ) + log p(θ∗) − log p(θ). For our new estimator DNRE, we only require
one pass such that −U(θ∗) + U(θ) = log r(x|θ∗,θ) + log p(θ∗)− log p(θ). To estimate ∇U(θ),
Hermans et al. [6] use the chain rule to derive ∇θU(θ) = −∇θr(x|θ)/r(x|θ). This estimate of
the derivative can be numerically unstable in practice as it requires exponentiating the output of the
estimator for the denominator, which we have observed can often be a small number. A more simple
approach is to estimate ∇U(θ) by treating the classifer as the approximate log ratio which allows
us to separate the two terms. For NRE we can achieve the new approximated derivative of the log
likelihood as:

∇θ log r(x|θ) ≈ ∇θ log p(x|θ)−∇θ log p(x) = ∇θ log p(x|θ). (4)

We also derive the same approximation for our DNRE approach:

∇θ log r(x|θ,θ′) ≈ ∇θ log p(x|θ)−∇θ log p(x|θ′) = ∇θ log p(x|θ). (5)

We have found these new estimators to be more stable, as they avoid the exponential and division
operations. For DNRE, we need to account for the θ′ when estimating the derivative. Therefore we
choose to sample θ′ from its prior during our implementation. For estimators that closely match the
true ratio, the contribution from θ′ to the derivative should tend to zero, following Equation (5).

4 SBI benchmark results

In this section we compare three amortized estimators: Neural Ratio Estimator (NRE) [6], Balanced
Neural Ratio Estimator (BNRE) [11], and our new approach of Direct Neural Ratio Estimator
(DNRE). The baseline approaches are implemented using the LAMPE Python package [12] and are
applied to the SBI Benchmark examples of [5]. All estimators have an architecture of five layers
of 64 units, using the Exponential Linear Unit non-linearity between layers. For all approaches
we applied the same grid search over both the learning rate and standard deviation of the proposal
distribution for the random-walk MH sampling scheme. For HMC, we extend the grid search to
include desired acceptance rates ranging between 0.5 to 0.8 and the trajectory length. This uses the
dual averaging scheme as introduced in [13] and as implemented in [14]. The best model for each
task was selected according to the C2ST score applied for 1,000 samples using the first observation
of the benchmark. The C2ST score is a classifier-based test trained to distinguish between reference
posterior samples and samples from the likelihood-free inference. The results in Table 1 are averaged
across the 10 available observations in the benchmark. A score of 0.5 is optimal, whereas 1.0 would
be the worst score. In addition to comparing across ratio estimators, the table compares both MH and
HMC sampling schemes. For seven out of the ten tasks, the best performer comes from either DNRE
MH, or DNRE HMC. Additionally, we note that different sampling schemes tend to outperform on
different tasks and we would therefore recommend experimenting with both HMC and MH for any
future use of likelihood ratio estimation.

5 Quadcopter design: Using DNRE to improve an existing design

An interesting use-case of SBI is to use our likelihood ratio estimator to improve on an existing
cyberphysical system design.

Arm Length

Fuselage Horizontal Diameter

Fuselage
Length

Fuselage 
Vertical

 Diameter

Figure 1: Schematic of the quadcopter design
which highlights the key design parameters related
to the fuselage and the arm length.

Simulator. In particular, we run a custom flight
dynamics pipeline which combines CAD soft-
ware [15] with a computational flight simulation
model [16, 17]. To use the pipeline, one can
define an aircraft design and allow the simula-
tor to determine performances such as its drag,
lift, maximum flight time and hover time. We
want to explore how we should parameterize a
quadcopter such that we achieve a certain perfor-
mance level. The observations, x ∈ R7, consist
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APPROACH TM GL LV SIR SLCP

NRE MH 0.559 ± 0.026 0.533 ± 0.015 0.995 ± 0.004 0.803 ± 0.083 0.925 ± 0.039
NRE HMC 0.657 ± 0.026 0.531 ± 0.015 0.996 ± 0.005 0.803 ± 0.082 0.913 ± 0.042
BNRE MH 0.544 ± 0.033 0.59 ± 0.019 0.997 ± 0.002 0.944 ± 0.029 0.893 ± 0.038
BNRE HMC 0.562 ± 0.07 0.543 ± 0.019 0.997 ± 0.003 0.945 ± 0.029 0.891 ± 0.039
DNRE MH 0.587 ± 0.027 0.576 ± 0.034 0.998 ± 0.002 0.871 ± 0.064 0.826 ± 0.078
DNRE HMC 0.753 ± 0.14 0.519 ± 0.006 0.998 ± 0.001 0.891 ± 0.043 0.892 ± 0.098

GLU SLCP D B GLM GM B GLM R

NRE MH 0.618 ± 0.025 0.982 ± 0.008 0.781 ± 0.046 0.751 ± 0.015 0.819 ± 0.035
NRE HMC 0.613 ± 0.025 0.995 ± 0.003 0.776 ± 0.044 0.752 ± 0.016 0.83 ± 0.044
BNRE MH 0.607 ± 0.021 0.984 ± 0.007 0.807 ± 0.039 0.755 ± 0.016 0.862 ± 0.047
BNRE HMC 0.598 ± 0.025 0.991 ± 0.009 0.788 ± 0.036 0.751 ± 0.015 0.86 ± 0.047
DNRE MH 0.597 ± 0.025 0.98 ± 0.011 0.813 ± 0.069 0.747 ± 0.015 0.777 ± 0.062
DNRE HMC 0.665 ± 0.162 0.989 ± 0.008 0.738 ± 0.038 0.747 ± 0.013 0.77 ± 0.109

Table 1: C2ST SBI benchmark results comparing NRE, BNRE, and DNRE with both Metropolis-
Hastings (MH) and HMC sampling schemes.

of: the number of interferences; the mass; the maximum flight distance; the maximum hover time;
the maximum lateral speed; the maximum control input at the maximum flight distance; and the
maximum power at the maximum speed. The design parameters, θ ∈ R19, consist of: the arm
length; four fuselage shape parameters; and seven ‘x’ and ‘y’ locations of electrical devices inside the
fuselage. We highlight some of the key parameters in Figure 1.

Improving an Existing Design. Figure 2 shows how we can use likelihood-free inference with
DNRE HMC to improve an existing design. Here, the current design has 60 structural interferences as
highlighted by the seed design. Our objective is to condition on the design to have zero interferences,
as well as other favorable design metrics, such as a hover time of 24 s and a maximum velocity of
33 m/s. We then initialize our HMC chain with this poor seed design and perform likelihood-free
inference with DNRE HMC. We take 200 steps with a thinning of 8 and run each design through
the simulator. We see the evolution of our seed design from having a 60 interferences (60) to only 4.
This is shown in the Figure. Additionally, all other design metrics are closely followed, where there
is low mean squared error between the design objectives and the actual performance.

Seed Design Final Design
Likelihood-Free HMC

Figure 2: Sub-sampled quadcopter designs taken along the likelihood-free HMC chain using DNRE.
The initial seed design on the far left has multiple structural interferences, including sensors that cut
through the fuselage. As we move along the chain we see the design morph into our desired structure
with very few interferences. This is achieved through increasing the arm length and changing the
shape of the fuselage, as well as varying the placement of the interior sensing components.

6 Conclusion

The contribution of this paper is to demonstrate that directly learning to approximate the likelihood
ratio between two pairs of parameters presents itself as a viable option for likelihood-free inference and
often outperforms competing approaches on standard SBI benchmarks. As part of our contribution,
we derive a new Monte Carlo estimator for the posterior distribution when using our DNRE approach.
We also derive a simple likelihood gradient estimator that can be successfully used to perform HMC.
We are therefore the first to compare random walk MH with HMC for likelihood ratio estimation
approahces. We find that HMC is a viable MCMC approach and can outperform random-walk MH.
Finally, we introduce a novel application of SBI for the design of a quadcopter and we release this
data as part of the supplementary materials.
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