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Abstract

Physics-informed neural networks (PINNs) constitute a flexible approach to both
finding solutions and identifying parameters of partial differential equations. Most
works on the topic assume noiseless data, or data contaminated by weak Gaus-
sian noise. We show that the standard PINN framework breaks down in case of
non-Gaussian noise. We give a way of resolving this fundamental issue and we
propose to jointly train an energy-based model (EBM) to learn the correct noise
distribution. We illustrate the improved performance of our approach using mul-
tiple examples.

1 Introduction

While the idea of using neural networks to solve partial differential equations (PDEs) dates back to
the work of Lagaris et al. [1], the field has received renewed attention [2, 3, 4, 5] due to the semi-
nal work of Raissi et al. [6], in which they introduced physics-informed neural networks (PINNs).
The main advantage of PINNs over traditional solvers lies in their flexibility, especially when con-
sidering the inverse problem [3]: as neural networks, they have the capacity for universal function
approximation, they are mesh-free, and they can directly be applied to very different kinds of PDEs,
without the need for a custom solver. In the inverse problem, PDE parameters are learned from data
and the question as to the effect of noisy data on the quality of the estimates arises naturally.

In this work, we consider the inverse problem for the case of measurements contaminated with non-
Gaussian noise of unknown form. The least-squares loss, which is commonly employed as data loss
in PINNs, is known to perform poorly in this case [7, 8]. We give a way of mitigating this issue by
suitably modelling the noise distribution. A high-level illustration of our method is given in Fig. 1:
we employ an energy-based model (EBM) to learn the noise probability density function (PDF)
jointly with the PINN. This PDF is then utilized to estimate the likelihood of the measurements
under our model, which in turn serves as data loss.

Non-Gaussian measurement noise of unknown form can appear in a variety of applications [9]. Mea-
surements of geomagnetic fields may exhibit asymmetric, long-tailed noise [7], data in astrophysics
or seismology may be contaminated with impulsive noise [10], and not accounted for systematic er-
rors in the measurement procedure may give rise to bias in the noise [11]. In addition to solving the
PDE correctly, the PINN-EBM identifies the noise distribution. In that way, it could, for example,
detect previously unrecognized systematic errors in the data.

Related work

Some research has been done on PINNs in case of noisy measurements, although typically only
Gaussian noise is considered. In Yang et al. [12], the framework of Bayesian neural networks [13] is
combined with the PINN framework, in order to obtain uncertainty estimates when training PINNs
on noisy data. Bajaj et al. [14] introduce the GP-smoothed PINN, where a Gaussian process (GP)
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Figure 1: The PINN-EBM approach: the inputs t are passed through the PINN to obtain the PINN
predictions x̂. The differential operator F(λ) is then applied to x̂ to obtain the PDE residuals, which
are subsequently utilized to calculate the PDE loss LPDE. At the same time, the residuals between
the noisy measurements y and x̂ are formed, serving as noise estimates. The EBM is then trained
on these estimates in order to learn the noise PDF, which can in turn be utilized to compute the
likelihood of the measurements serving as data loss LEBM

data . Finally, the two loss terms are combined
to form the total loss Ltot. Both PINN and EBM, as well as the PDE parameters λ, can be trained
by backpropagating Ltot.

[15] is utilized to ameliorate noisy initial value data and make the PINN training more robust in
this situation. In Chen et al. [16], the PINN-SR method is introduced which can be employed to
determine governing equations from scarce and noisy data. In contrast to these works, we give
a way of taking into account unknown, non-Gaussian noise in the PINN and provide a training
procedure for this case.

While EBMs are commonly employed for classification [17] and image generation [18], they have
also been successfully applied to regression problems; applications include object detection [19] and
visual tracking [20]. In Gustafsson et al. [21], different methods for training EBMs for regression
are discussed. In our work we also consider regression tasks and to the best of our knowledge, our
paper is the first to combine EBMs and PINNs. The standard EBM approach to regression would
not take the physical knowledge in form of the differential equation into account.

Background

PINNs The PINN-framework [6] can be used as an alternate approach to solving PDEs. A neural
network is employed to parameterize the numerical solution x̂(t) = x̂(t|θPINN) of the PDE, where
θPINN denotes the network parameters. The PDE is defined via the differential operator F(λ),
which may contain unknown parameters λ. We are given a dataset Dd = {tid, yid}

Nd
i=1 of Nd (noisy)

measurements of the PINN solution and choose another set of Nc so-called collocation points Dc =
{tic}

Nc
i=1. When training the PINN, two losses enter into the loss function: the data loss, evaluating

the fit of the PINN prediction with the data, and the PDE loss, a measure of the fulfillment of the
PDE by the PINN solution:

Ldata(x̂, {td, yd}mb) =
1

N ′
d

N ′
d∑

i=1

(x̂(tid)− yid)
2, LPDE(F , x̂, {tc}mb) =

1

N ′
c

N ′
c∑

i=1

f(tic)
2, (1)

where the f(t) = F(λ)x̂(t)
!
= 0 denote the PDE residuals, and N ′

d and N ′
c the number of data

and collocation points in the current minibatch (mb), respectively. The PINN is then trained by
minimizing the total loss Ltot = Ldata + ωLPDE with respect to the parameters θPINN and λ.
Unless stated otherwise, the weighting factor ω = 1.

EBMs EBMs constitute a powerful method of learning probability densities from data [17]. The
EBM can retain all of the flexibility of a neural network, via the following parametrization: first,
we introduce ĥ(t, y) = ĥ(t, y|θEBM) which denotes the (scalar) output of the neural network with

weights θEBM. Then the probability p(y|t, ĥ) = eĥ(t,y)

Z(t,ĥ)
, where the partition function Z(t, ĥ) =∫

eĥ(t,ỹ)dỹ. To train the network, we choose the approach of directly minimizing the negative log-
likelihood (NLL) [21], which can be written as

NLL({td, yd}mb, ĥ) = − log

N ′
d∏

i=1

p(yid|tid, ĥ)

 =

N ′
d∑

i=1

logZ(tid, ĥ)− ĥ(tid, y
i
d). (2)
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In our case, the evaluation of the partition function to high accuracy remains tractable by utiliz-
ing numerical integration, since the noise distribution is one-dimensional (note that this does not
constitute a restriction on the dimensionality of the PDE).

2 Problem formulation

We consider the following setup, consisting of the differential equation and a measurement equation:

F(λ)x(t) = 0, y(t) = x(t) + ϵ, (3)

where the parametric form of the differential operator F(λ) is given, as well as Nd measurements
y(t) of the corresponding solution x(t) contaminated with homogeneous measurement noise ϵ. In
this work, we aim to combine the PINN and the EBM framework in order to solve the inverse
problem in case of measurements contaminated with non-Gaussian and non-zero mean noise.

Using the least-squares loss will produce wrong solutions in such cases, as biased noise will push
the PINN solution systematically away from the correct solution x. A way of mitigating this is to
add an offset term θ0 to the PINN prediction in the data loss, i.e. x̂ → x̂ + θ0 in (1), which is
supposed to learn the bias. While consistent with the PINN loss, this solution still ignores the actual
shape of the noise distribution.

In order to take the full shape of the noise distribution into account, we train an EBM and employ it
to obtain the negative log-likelihood of the data, given both our models. For the training procedure,
we then employ the following loss function:

Ltot = LEBM
data ({yd − x̂(td)}mb, ĥ|θPINN, θEBM) + ωLPDE(F , x̂, {tc}mb|θPINN, λ), (4)

where LEBM
data (·, ĥ) = 1

N ′
d

NLL(·, ĥ) = logZ(ĥ)− 1
N ′

d

∑N ′
d

i=1 ĥ(·), utilizing (2); note that ĥ and hence
the NLL are now independent of t, because we consider homogeneous noise. Since we do not
know the actual magnitude of the noise at each data point, we use the residuals yd − x̂(td) between
the current PINN prediction and the measurements as our best guess. These estimates of the noise
values then serve as training data for the EBM. In other words, we employ an unconditional EBM to
model the PDF of the residuals. With the loss (4), both models are trained jointly until convergence.
Details on the training procedure are given in Appendix A.1.

3 Experimental results

In our experiments, we compare results for the standard PINN, the PINN with learnable offset
parameter θ0, and the combination of PINN and EBM. We refer to these models as PINN, PINN-
off and PINN-EBM. We consider homogeneous noise in a variety of shapes: Gaussian noise (G), a
uniform distribution (u), and a mixture of three Gaussians (3G). 3G0 refers to the same distribution
as 3G, shifted to have zero mean. Plots and exact definitions of these noise distributions can be
found in Appendix A.3. We employ two differential equations of increasing complexity:

The exponential equation: ẋ(t)− λx(t) = 0 (5)
The Navier-Stokes equations: ut + λ1(uux + vuy) + px − λ2(uxx + uyy) = 0 (6)

vt + λ1(uvx + vvy) + py − λ2(vxx + vyy) = 0

The correct values of the PDE parameters are given by λ = 0.3, λ1 = 1, λ2 = 0.01. The results are
collected in Table 1, where we consider the following performance metrics: the absolute error in the
learned values of the PDE parameters (|∆λ|), the root-mean-square error (RMSE) on the validation
data, the log-likelihood (logL) of the validation data according to the models, and the square values
of the PDE residuals (f2) on the training data.

In practice, the log-likelihood is the most relevant performance metric: contrary to the RMSE and
|∆λ|, it can also be calculated when the true solution is not known. While f2 can also be calculated
without knowledge of the true solution, it only measures how well the learned PDE is fulfilled and
not necessarily the correct one.

When considering the results for the exponential differential equation, it is apparent that PINN-EBM
performs best in case of non-Gaussian noise. PINN-off manages to improve upon PINN in case of
biased noise, but is hindered by the high variance of its predictions; we suspect that this may be due
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Exponential (5)

noise PINN-EBM PINN-off PINN

3G 100|∆λ| 1.22±1.12 3.96±3.62 10.22±1.47
RMSE 0.29±0.29 1.07±0.87 4.01±0.28
logL -3.48±0.97 -7.85±9.00 -8.88±2.75
100f2 0.51±0.30 30.85±11.51 48.83±17.07

u 100|∆λ| 1.27±0.33 3.25±2.45 12.29±0.66
RMSE 0.19±0.12 0.79±0.53 5.11±0.17
logL -4.75±1.14 -6.49±6.77 -19.06±3.82
100f2 0.72±0.29 16.25±4.75 37.94±12.56

G 100|∆λ| 2.45±1.78 2.02±1.34 1.08±0.91
RMSE 0.60±0.43 0.46±0.27 0.29±0.07
logL -5.13±2.47 -5.05±3.55 -4.15±2.48
100f2 0.42±0.32 10.82±5.97 11.72±6.58

3G0 100|∆λ| 1.17±1.03 5.28±3.23 2.21±2.03
RMSE 0.23±0.19 1.12±0.69 0.48±0.15
logL -3.73±1.29 -9.76±11.15 -5.44±3.99
100f2 0.61±0.41 32.20±15.05 34.02±15.53

Navier-Stokes (6)

noise PINN-EBM PINN-off PINN

3G 100|∆λ1| 1.19±0.67 2.92±0.47 23.1±0.11
100|∆λ2| 0.04±0.03 0.09±0.05 0.08±0.06
RMSE 0.01±0.00 0.03±0.00 0.19±0.00
logL 0.03±0.08 -0.15±0.07 -0.40±0.30
100f2 0.04±0.00 0.10±0.01 0.18±0.01

Table 1: Results for the differential equations (5)-(6) in case of dif-
ferent noise forms (compare Appendix A.3). The entries in the table
are mean values plus-or-minus one standard deviation. 10 runs were
performed in case of the exponential differential equation, 5 runs for
the Navier-Stokes equations. Bold font highlights best performance.
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Figure 2: The exponential
differential equation (5)
with 3G noise. The re-
sults for one individual run
are shown, where the blue
dots represent training data
and the red dots validation
data.
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Figure 3: The Navier-
Stokes equations with 3G
noise. We consider the
log-likelihood on the vali-
dation data as a function of
the parameter ω, weight-
ing the PDE loss. The av-
erages of 5 runs are de-
picted, plus-or-minus one
standard deviation.

to noise values far away from the mean having an outsized effect on the learning of the parameter
θ0 in this model. In case of Gaussian noise, PINN produces the best results; this makes sense, since
here it implicitly uses the correct likelihood.

For the Navier-Stokes equations, PINN-EBM also outperforms the other models, with PINN-off
performing significantly better than PINN. Here, ω = 50 was chosen for PINN-EBM, according to
the logL on the validation data (compare Fig. 3). For PINN and PINN-off, increasing ω did not lead
to improved results and led to completely wrong predictions for ω > 10 (not shown).

Additional experiments and results are discussed in the technical report [22].

4 Conclusions and future work

In this work, we demonstrated that the standard PINN fails in case of non-zero mean noise and we
proposed the PINN-EBM to resolve this problem; utilizing an EBM to learn the noise distribution
allows the PINN to produce good results also in case of non-zero mean and non-Gaussian noise.
Employing a simple toy problem and the complex Navier-Stokes equations, we demonstrated the
capabilities of our method and showed that it outperforms the standard PINN by a significant margin
in case of non-Gaussian noise. In addition to determining the correct PDE solution, the PINN-EBM
also allows for the identification of the true noise distribution, which may result in novel insights.
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In the future, it would be interesting to investigate combining the PINN-EBM with other improve-
ments to the PINN framework, such as adaptive weighting schemes [23], scheduling approaches
[24, 25] or additional loss terms [26]. In principle, our method could also be applied to the problem
considered in [14] (see also Section 1): where the standard GP presumably would fail here as well
in case of non-Gaussian noise, a representation for the initial conditions could potentially also be
learned via PINN-EBM.

Impact Statement

This research may enable PINNs to be trained on real-world data contaminated with non-Gaussian
noise. We expect this to be of interest for scientific applications and do not foresee any negative
societal impact.
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Algorithm 1: Training the PINN-EBM

Input : PINN x̂(·|θPINN), EBM ĥ(·|θEBM), data points {td, yd}, collocation points {tc},
differential operator F(λ), weighting factor ω

Output: optimized θPINN, θEBM, λ
i = 0
while Training do

Draw a minibatch of data points {td, yd}mb and of collocation points {tc}mb

if i < iebm then
Calculate data loss Ldata(x̂, {td, yd}mb) according to (1)

else
if i = iEBM then initialize EBM

Calculate data loss LEBM
data

(
{yd − x̂(td)}mb, ĥ

)
from (4)

end
if i >= iEBM then ω′ = ω else ω′ = 1
Calculate PDE loss LPDE(F , x̂, {tc}mb) according to (1)
Compute total loss Ltot = Ldata + ω′LPDE

Calculate gradient ∇θLtot and update θ = {θPINN, θEBM, λ}
i += 1

end

A Additional details on the experiments

In this appendix, we give additional details on the training procedure and the experiments.

A.1 Training PINN and EBM jointly

In Algorithm 1, the training procedure for the PINN-EBM is summarized. Since both PINN and
EBM need to be trained in parallel, the optimization procedure can be very challenging. In our
experiments, it proved advantageous to start with the standard PINN loss in order to obtain a solution
close to the data, and to only subsequently, after iEBM iterations, switch to the EBM loss, in order
to fine-tune the solution. Before the EBM loss is used for the first time, we initialize the EBM by
training it for NEBM iterations on the current noise estimates yd−x̂(td), while keeping all parameters
except θEBM fixed. Starting directly with the EBM loss also worked, but it often took significantly
longer for the algorithm to converge.

Initializing the EBM only later during the training process is advantageous for two reasons: firstly,
the least-squares loss is still a sensible first guess, so initializing the EBM on the residuals stemming
from the pretrained network will let it start out with a reasonable form of the likelihood instead of
a random one. Secondly, it will give us a better idea on the range in which the residuals between
PINN prediction and data lie, allowing for a better normalization of the inputs to the EBM and hence
more efficient training.

A.2 Implementation details 1

The datasets employed for the exponential differential equation 5 contained 200 training points, 50
validation points and 2000 collocation points. For the Navier-Stokes equations 6, 4000 training
points, 1000 validation points and 4000 collocation points were used. The collocation points were
generated on a uniform grid. For both PINN and EBM, fully-connected neural networks with tanh
activation function were used, with 4 layers of width 40 in case of the former, and 3 layers of width
5 for the latter. For the EBM, a dropout layer with factor 0.5 was inserted before the last layer.
Both inputs and outputs of the networks were normalized to their expected ranges. In case of the
Navier-Stokes experiment, 5 layers of width 30 were used for the PINN. The EBM was initialized
after iEBM = 4000 iterations, except for the Navier-Stokes example, where iEBM = 10000 was
chosen. The Adam optimizer with learning rate of 2e-3 was used for both PINN and EBM. The

1The code for the project is available at https://github.com/ppilar/PINN-EBM.

7

https://github.com/ppilar/PINN-EBM


true
EBM

10 5 0 5 10 15

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

10 5 0 5 10 15

0.000

0.025

0.050

0.075

0.100

0.125

0.150
true
EBM

10 5 0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

true
EBM

10 5 0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

true
EBM

Figure 4: The noise distributions considered in the experiments are depicted. From left to right,
we have a Gaussian distribution (G), a uniform distribution (u), a mixture of Gaussians (3G), and
the same mixture of Gaussians, shifted to obtain zero mean (3G0). The dashed blue curves give
examples of PDFs learned by the EBM during the training process, whereas the black curve gives
the true PDF.

batch size for data points was 200 and the batch size for collocation points was 100. Training the
PINN-EBM typically took 30-50% longer than the standard PINN.

A.3 Noise

In our experiments, we consider homogeneous noise in a variety of shapes. Amongst them are
Gaussian noise p(x) = N (x|0, 2.52), a uniform distribution p(x) = U [0, 10] and a Gaussian mixture
of the form p(x) = 1

3

(
N (x|0, 22) +N (x|4, 42) +N (x|8, 0.52)

)
. The values given here are scaled

to the example of the exponential function (5). For other experiments, the shapes of the curves
are retained, but the magnitude of the noise values is rescaled by a factor corresponding to the
measurement values of the dataset at hand. In Fig. 4, the different noise distributions are depicted,
together with a few examples of the PDFs learned by the EBM during experiments.
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