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Abstract

To understand the fundamental parameters of galaxy evolution, we investigated
the minimum set of parameters that explain the observed galaxy spectra in the
local Universe. We identified four latent variables that efficiently represent the
diversity of high-dimensional galaxy spectral energy distributions (SEDs) observed
by the Sloan Digital Sky Survey. Additionally, we constructed meaningful latent
representation using conditional variational autoencoders trained with different
permutations of galaxy physical properties, which helped us quantify the informa-
tion that these traditionally used properties have on the reconstruction of galaxy
spectra. The four parameters suggest a view that complex SED population models
with a very large number of parameters will be difficult to constrain even with
spectroscopic galaxy data. Through an Explainable AI (XAI) method, we found
that the region below 5000Å and prominent emission lines ([O II], [O III], and Hα)
are particularly informative for predicting the latent variables. Our findings suggest
that these latent variables provide a more efficient and fundamental representation
of galaxy spectra than conventionally considered galaxy physical properties.

1 Introduction

A galaxy’s spectral energy distribution (SED), which reflects the multi-wavelength flux observed of
a galaxy, is often the only path to study the astrophysical processes within them. Instruments like
the current Dark Energy Spectroscopic Instrument (DESI), upcoming Prime-Focus Spectrograph
(PFS) instrument, and integral field units (IFUs) like the Multi Unit Spectroscopic Explorer (MUSE),
obtain high-dimensional data for sometimes millions of galaxies, posing computational complexity
challenges and issues inherent to high-dimensional analysis, such as overfitting and multicollinearity.
Traditionally, we have employed various methods that make high-dimensional data manageable, such
as photometry and color-magnitude diagrams [e.g., 4] and the BPT diagram [3], to characterize galaxy
spectra based on their representative low dimensional features. However, these low-dimensional
representations do not contain the complete spectral information. Hence, we use neural networks
to extract full information from high-dimensional galaxy spectroscopic data. In doing so, this
work addresses three main scientific questions: 1. How many parameters are required for adequate
representation of galaxy SEDs? 2. What fundamental physical properties explain the observed SEDs?
3. Which spectral ranges are the most informative for representing observed SEDs?

This work uses the Variational Autoencoder [VAE; 8], a type of neural network to compress galaxy
spectra into meaningful, lower-dimensional latent parameters without relying on explicit labels or
prior assumptions. To identify the most informative physical properties in reconstructing galaxy
spectra, we employ the Conditional VAE [CVAE; 7], incorporating conditional properties such as
stellar mass (M∗), star formation rate (SFR), specific SFR (sSFR = SFR/M∗), and metallicity (Z). We
also utilize the XAI method named SHAP [SHapley Additive exPlanations; 10] to assign importance
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values to specific spectral features in galaxy SEDs. This enables us to identify key spectral ranges
that influence the VAE’s latent variables, providing insight into the fundamental characteristics of
galaxies.

2 Data and Methodology

The primary dataset for this analysis is the galaxy spectroscopic data from the Sloan Digital Sky
Survey [SDSS; 1]. Physical properties were derived from the GALEX-SDSS-WISE Legacy Catalog
[GSWLC; 17], which used UV+optical+mid-IR SED fitting. Our final dataset includes SDSS spectra
cross-matched with the GSWLC. We limit to galaxies with a redshift < 0.1 to ensure consistency
in the spectral range across our dataset. For preprocessing spectra, we used the Python module
spectres to shift each galaxy spectrum to its rest frame and to resample it to 4000 logarithmically
spaced wavelength pixels within the range of 3400Å–8400Å. A similar approach was employed in
previous studies [e.g., 16, 13]. We also used an iterative principal component analysis (PCA) method
to handle bad data points, following a similar approach used by [21]. The dataset utilized for this
study comprises a total of about 320,000 galaxy spectra.

We employ a VAE and its variant CVAE for this analysis. VAE is a two-component architecture,
an encoder and a decoder, where the encoder maps high-dimensional data into a usually lower-
dimensional latent space, and the decoder reconstructs the original input from lower-dimensional
latent variables. The VAE loss function is the sum of two components: the reconstruction error,
which is the distance metric between the input data and the reconstructed output and Kullback-
Leibler divergence [9], which encourages the latent variables to usually follow a standard Gaussian
distribution, N(0, 1). The VAE achieves a continuous lower-dimensional latent representation of the
complex, high-dimensional data by optimizing this composite loss function(refer to the Appendix
A). CVAE integrates conditional data during the encoding and decoding processes, enabling more
controlled output generation while retaining the same loss function as the VAE. By utilizing physical
properties as conditional data, we obtain latent representations that remain unaffected by them.

The deep neural network model, often seen as a "black box," poses challenges in understanding the
underlying reasons for its predictions. To address this problem, we utilized SHAP values, which
quantify the influence of each feature on the model’s predictions, thereby elucidating the impact of
different inputs on the outcome (refer to the Appendix B). All scripts for downloading SDSS spectra,
preprocessing data, training, and generating the figures are accessible �here.

3 Results

The primary results of our study indicate that four latent variables can effectively represent the 320k,
4000-dimensional galaxy spectra, showing strong correlations between the observed diversity of
galaxy physical properties. These latent parameters also show correlations with traditional galaxy
physical properties such as stellar masses, star formation rates, specific star formation rates, and
metallicity, as shown in Figure 1.

We use the Bayesian information criterion [BIC; 18] to identify the optimal number of parameters
for spectral reconstruction. The BIC is a criterion used for model selection among models with
varying permutations of conditional parameters. BIC is defined as BIC = k log(n)− 2 log(L) where
k is the total number of parameters and L is the likelihood. BIC, derived from Bayesian principles,
aims to identify the ’true’ model among the candidates. This approach is distinct from other criteria
based on information entropy [2]. Figure 2 presents the BIC values as a function of the total number
of parameters (latent variables + conditional data). We successfully quantified the extent to which
physical properties influence the reconstruction of galaxy spectra and the capture of an informative
latent representation. Our results indicate that the VAE with four parameters is the best model. The
fact that the VAE outperforms the CVAE suggests that the latent variables obtained provide a more
efficient representation for characterizing galaxy spectra distribution compared to traditional galaxy
physical properties. We also found that increasing the number of conditional parameters does not
improve the results significantly. Moreover, when excluding the VAE, the CVAE model conditioned
with M∗ and the model conditioned with SFR performs well under our metric. The former yielded a
result of 945.67, while the latter scored 945.14, indicating a difference of just approximately 0.5. The
standard deviation of the BIC values for models with five parameters is 8.83, so this 0.5 difference is
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Figure 1: Distribution of average stellar masses,
SFR, sSFR, and TType in the latent space. The
figures from the top right to the bottom left dis-
play the distributions of M∗, SFR, sSFR, and
TType in the latent space. Median values for
each property are calculated within their respec-
tive bins. The morphological properties are de-
rived from 5.

Figure 2: BIC values for combinations of latent
variables and conditional data. BIC values are pre-
sented as a function of model complexity, with
total parameters on the x-axis and conditional data
on the y-axis. The color gradient depicts BIC val-
ues: darker shades represent higher values, and
lighter shades indicate lower ones. A model with
a lower BIC is typically a better fit. The blue star
marks the model that achieves the optimal balance
between fit and complexity.

not very significant. This result is equivalent to what would be obtained by determining the Evidence
Lower Bound with an added KL divergence loss term.

4 Discussion

4.1 How many parameters are required for adequate representation of galaxy SEDs?

The latent variables D1 to D4 are PCA-transformed values of the VAE latent features. PCA is a
lossless transformation that preserves information because it does not alter the number of parameters
[14]. In the original VAE latent space, axes are arbitrary and may not correspond to meaningful
directions. By applying PCA tranformation to the latent variables, the latent axes are the most
informative. A similar approach was done in previous studies [16, 13]. D1 to D4 capture 34%, 32%,
16%, and 18% of the total variance, respectively.

Figure 3, shows the effect of changing the latent parameters on the reconstructed spectra. We used
Mutual Information (MI) values to understand the link between latent variables and physical properties
(Figure 4). As seen in Figure 3 Panel A, D1 impacts the 4000Å break, signifying evolving stellar
populations along D1. Higher D1 aligns with star-forming galaxies, while lower values indicate older,
quiescent galaxies. D1 also has the highest correlation with M∗, then sSFR, and lastly, metallicity.
This reflects a trend from lower-mass to massive galaxies along D1 as seen in Figure 1. Modifying
D2 (Figure 3, Panel B) alters the spectral intensity, mainly below 5000Å, while increasing emission
line strength to around 6000Å. Figure 4 shows D2 exhibits a strong correlation with SFR. D1 and D2

account for roughly 66% of the total variance. The low MI values between D1 and SFR, and D2 and
M∗, combined with improved reconstructions using SFR and M as data, emphasize the importance
of M∗ and SFR in describing galaxy spectra. These patterns remained consistent across different
number of latent variables settings, underlining the key roles of D1 with M∗ and D2 with SFR in
galaxy spectrum characterization.
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Figure 3: Effect of single latent variable
change on reconstructed spectra. With all
other parameters held at zero, the figure
demonstrates the influence of varying just one
latent variable on the generated spectra. The
four panels, from A to D, correspond to dif-
ferent latent variables: D1 through D4.
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Figure 4: Mutual information between parameters
and latent variables (D1 to D4). These eight bar
plots depict the MI between parameters and latent
variables (D1 to D4). Parameters include M∗, SFR,
sSFR, Metallicity, exponential τ , Velocity Disper-
sion, Attenuation in B band, and V band, ordered
top left to bottom right. The y-axis signifies MI
value, and the x-axis presents the four latent vari-
ables.

Figure 3 (Figure 3, Panel C and D) displays how D3 and D4 influence emission line intensities like [O
II], [O III], and Hα without altering the stellar continuum. D3 correlates with ionized gas attributes
and Active Galactic Nuclei (AGNs) presence, especially the [O III] emission line. Galaxies with
AGNs or ionization from evolved stellar populations exhibit pronounced [O III] lines and higher
D4000 values, indicating a larger fraction of older stars. While D3 shows variable [O III] intensity,
Hα remains stable. In D4, oxygen lines and Hα increase simultaneously. Hα from ionized hydrogen
gas, indicates active star formation, with its strength correlating with the [O II] emission due to
ionization by young stars. However, AGNs can alter this relationship.

To more carefully interpret these latent representations, we use SHAP values to evaluate the signifi-
cance of individual input wavelengths for predicting latent variables. A positive SHAP value indicates
that increasing the feature’s value increases the prediction, while a negative value decreases. In Figure
6 Panel A, SHAP value of D3 peaks at [O II] emission lines and declines at [O III] and Hα emission
lines. Similarly, Panel B shows SHAP value of D4 rises at both [O II] and [O III] emission lines
and falls at Hα emission lines. Therefore, we conclude that D3 represents AGN strength, signifying
the ratio of [O II] strength compared to [O III] and Hα, while D4 indicates the ratio of Hα strength
relative to [O III] and [O II] emission lines. This study’s results are based on a single dataset and
single model. There is a need for further investigation using additional datasets to verify and extend
these findings.

4.2 What fundamental physical properties explain the observed SEDs?

Figure 2 shows that the CVAE model conditioned with M∗ and the model conditioned with SFR
ranks higher in the metric, implying that M∗ and SFR contribute most significantly to describing the
galaxy spectral distribution while penalizing for the increasing model complexity. Figure 5 shows the
spectra reconstructed by the CVAEs when changing each physical property while keeping other latent
variables constant at zero. When altering SFR, the intensity of the reconstructed spectra below 5000Å
decreases while the continuum above 5000Å remains mostly the same. As expected, we see significant
variation of [O II], [O III], and Hα emission lines with SFRs. This means that SFR is relatively
independent of the continuum shape. However, that is not the case when M∗, sSFR, and metallicity
are altered. M∗ and metallicity are expected to be correlated [e.g., 20]. Therefore, increasing M∗
and metallicity show similar changes to the reconstructed spectra. Decreasing the sSFR shows the
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Figure 5: This figure consists of four panels (la-
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Figure 6: SHAP values as a function of wave-
length for predicting latent variables. These
figures display SHAP values as a function of
wavelength, representing the importance of each
wavelength in predicting latent variables. Panel
A displays the SHAP values for D3 for the
galaxy (Plate1173-Mjd52790-FiberID111). Panel
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galaxy. Panel C shows the logarithmically aver-
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continuous change from spectra dominated by young stellar populations with prominent nebular
emissions to older stellar population emissions with minimal nebular emissions. These changes are
in line with spectra changes expected for star-forming to quiescent stages of a galaxy. These results
show that SFR affects the reconstructed spectra differently from M∗, sSFR, and metallicity.

4.3 Which spectral ranges are the most informative for representing observed SEDs?

Figure 6 shows the SHAP values in predicting the latent variables as a function of wavelength. SHAP
values provide a measure of the contribution of each feature in predicting the latent variables, thereby
indicating their importance. Panel C displays the average importance of each input wavelength in
predicting latent variables, as measured by average absolute SHAP values. By taking the absolute
value of these SHAP values, we emphasize the magnitude of a feature’s impact on the predictions
Our analysis reveals the follwing pattern: wavelengths above 5000Å, with the exception of a few
specific emission lines, exhibit minimal influence on our predictions. Therefore, it appears that an
adequate characterization of galaxy spectra relies primarily on the data below 5000Å and selected
emission lines.

5 Conclusion

This study employed VAE and CVAE to extract four fundamental parameters from high-dimensional
galaxy spectra. Our aim was to assess how these parameters, representing physical properties, affect
the reconstruction of galaxy spectra and the formation of informative latent features. Specifically, D1

is associated with M∗, and D1 correlates with the SFR. D3 indicates the ratio of [O II] to [O III] and
Hα intensities, whereas D4 represents the ratio of Hα to [O III] and [O II] emissions. Our findings
show that incorporating M∗ and SFR into the CVAE model enhances the accuracy of galaxy spectra
reconstruction. Additionally, SHAP analysis identified that wavelengths below 5000Å and certain
emission lines are particularly influential in these spectral ranges.
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S. Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas, L. D. Bradley, D. Pérez-
Suárez, M. De Val-Borro, (Primary Paper Contributors), T. L. Aldcroft, K. L. Cruz, T. P. Robitaille,
E. J. Tollerud, (Astropy Coordination Committee), C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V.
Bakanov, S. P. Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M. Boquien,
K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J.
Burke, G. Calderone, J. L. C. Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin, L. Corrales,
D. Crichton, D. D’Avella, C. Deil, E. Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben,
S. Fabbro, L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein,
R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P. Hirst, D. Homeier, A. J.
Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Živezić., A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S.
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A VAE

The main objective of VAE is to approximate the posterior distribution of latent variables given the
input data. In VAE, first, we determine the architecture of the neural network (Figure 7) and then
find the best parameters to approximate the probability distribution. This is done by maximizing the
Evidence Lower Bound (ELBO). The ELBO is expressed as:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) (1)

where E denotes the expectation, DKL is the Kullback-Leibler divergence, θ and ϕ are neural network
parameters, z are latent variables, and x is the observed data. The first term Eqϕ(z|x)[log pθ(x|z)] is
the reconstruction loss, which encourages the decoded samples to be close to the original inputs. The
second term DKL(qϕ(z|x)∥p(z)) is the KL divergence, which measures the difference between the
learned distribution qϕ(z|x) and the prior distribution p(z), typically a standard normal distribution.
Each dimension is independent p(z) = Πjp(zj). Thus, this regularization constrains each element of
the latent variable to be independent, which allows us to get disentangle representation. A VAE not
only learns the reconstruction but also the representation z ∼ qϕ(z|x). In deep generative models,
representation learning is equivalent to inference. That is why VAE is known as a good method for
representation learning and we use it.

To enable gradient-based optimization, VAE uses the reparameterization trick. Latent variables are
expressed as a deterministic function of the input and some random noise:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I) (2)

where µ and σ are the mean and standard deviation of the latent distribution predicted by the encoder,
and ⊙ represents element-wise multiplication.

The VAE loss function combines the reconstruction loss (typically Mean Squared Error for continuous
data) and the KL divergence:

L(θ, ϕ;x) = 1

L

L∑
l=1

log pθ(x|z(l))−DKL[qϕ(z|x)∥p(z)] (3)

with z(l) being samples drawn from the latent distribution using the reparameterization trick. During
training, a VAE aims to minimize the negative ELBO by adjusting its parameters, θ and ϕ. This
approach is effectively equivalent to maximizing the ELBO. Through this process, the VAE trains the
encoder to generate meaningful latent representations and the decoder to accurately reconstruct the
input data from these representations.

B The SHAP values analysis

We employ the DeepExplainer function from Python’s shap library to analyze SHAP values. These
values, based on cooperative game theory, explain the output of machine learning models like our
encoder gϕ. They measure the significance of each feature in a prediction by comparing its impact to
a baseline value. This analysis reveals how individual features influence the model’s decision-making.
In a model f (our Encoder gϕ), with M input features, the SHAP value ϕi for feature i quantifies this
influence based on cooperative game theory principles.The SHAP value ϕi(x) is calculated using the
formula:

ϕi(x) =
∑

S⊆N\i

|S|!(M − |S| − 1)!

M !
[fx(S ∪ i)− fx(S)], (4)
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Figure 7: The illustration of the VAE architecture. The VAE architecture is depicted using color-
coded blocks for different operations: ConvBloc in blue (Conv1D, BatchNorm1D, Dropout1D),
LinearBlock in gray (Linear, LeakyReLU, Dropout), and ConvTBlock in yellow (ConvTranspose1D,
BatchNorm1D, LeakyReLU, Dropout1D). Central white blocks represent Flatten and Unflatten
operations for reshaping data, and an additional white block combines Conv1D, nn.ReLU, Flatten,
Linear, and ReLU for matching input shape. These components collectively facilitate encoding of
input x, decoding of output x̂, and generation of patterns z. Key processes include feature extraction,
data processing, reconstruction, and data reshaping, with the Reparameterization Trick introducing
learnable parameters µ and σ for the latent space distribution z.

where fx(S) is the model output with a specific set of features S, and N is the total feature set. The
formula considers all possible subsets of features excluding feature i, calculating the change in model
output when i is included versus excluded. The term |S|!(M−|S|−1)!

M ! weights these changes to reflect
the numerous combinations of features. This method quantifies the importance of each feature in
the model’s prediction, ensuring a fair distribution of impact among features, a concept rooted in
cooperative game theory.
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