Universal Semantic-less Texture Boundary Detection for Microscopy (and Metallography)

Matan Rusanovsky
NRCN
Israel
matanr@nrcn.org.il

Ofer Be’eri
NRCN
Israel
ofer.beeri@gmail.com

Shai Avidan
Tel-Aviv University
Israel
avidan@tauex.tau.ac.il

Gal Oren
Technion, NRCN
Israel
galoren@cs.technion.ac.il

Abstract

The automated analysis of textures has always been a topic of importance in metallographic imaging in particular and in microscopy in general. Those analyzed textures are used in a variety of applications, and as such, texture analysis is at the backbone of most, if not all, other vision tasks. However, the task of texture analysis greatly differs from related and well-defined tasks such as edge, contour, and semantic analysis for detection and segmentation. As texture perception is hard even for humans to define and includes a subjective outlook, computerized texture-based segmentation in semantic-less and texture-oriented images has not been achieved so far. Moreover, it is difficult to apply recent computer vision algorithms to such images because of database shortages in this domain, as well as a shortage of accurately labeled data.

Therefore, we wish to develop a Universal Texture Representation (UTR). This representation will allow us to segment any texture image in any domain and even develop a Universal Texture Boundary Detector (UTBD). Crucially, such algorithms should work on texture images (and even videos) that have no semantic meaning, such as metallographic textures; hence, the vast literature on edge, contour, and semantic segmentation can not be used as is in our context.

Henceforth, we formulate and define our problem: Universal semantic-less texture boundary detection. A solution to this newly defined problem – which, in this work, we present the initial path towards on our Texture Boundary in Metallography (TBM) dataset – could be used in a variety of applications as is or as an enhancer to other closely related vision tasks. For example, it could help quickly segment new images based on single-click segmentation cues provided by the user, or it could help retrieve images with similar textures from past experiments.

1 Introduction – The Significance of Universal Texture Representation

The automated analysis of textures has always been a topic of importance in biomedical and metallographic imaging, involving different acquisition techniques, from simple microscopes to scanning electron microscope (SEM), and from elementary X-ray radiography and ultrasound (US), to computed tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI). Those analyzed textures are used in a variety of applications, including the segmentation of different anatomical areas or crystalline orientation, the differentiation between normal and pathological subjects/inclusions/precipitates, as well as the classification and grading of a large number of pathological conditions or mechanical and electrical properties. As such, texture analysis is at the backbone of most, if not all, other vision tasks. However, it also...
greatly differs from related and well-defined ones such as edge, contour, and semantic analysis for
detection and segmentation [36]. As texture perception is hard even for humans to define and includes
a subjective outlook, computerized texture-based segmentation in semantic-less and texture-oriented
images (such as microscopy) has not been achieved so far. Moreover, it is difficult to apply recent
computer vision algorithms to such images because of database shortages in this domain, as well as a
shortage of accurately labeled data.

Therefore, we wish to develop a Universal Texture Representation (UTR) that will allow us to segment
any texture image in any domain. Going one step further, we also wish to develop a Universal Texture
Boundary Detector (UTBD). Such a detector will be able to distinguish between different textures
without having to consistently assign the same label to the same texture in different parts of the image.
For example, it could help quickly segment new images based on single-click segmentation cues
provided by the user. Or, it could help retrieve images with similar textures from past experiments for
comparison, such as in [12, 13].

Crucially, our algorithms should work on texture images that have no semantic meaning; hence, the
vast literature on edge/contour/semantic segmentation can not be used as is in our context, including
Segment Anything Models (SAM) [29], that might succeed in cases in which semantics appears
in the image, but fails when those are missing or form a texture collaboratively. Moreover, as the
problem of boundary detection in images of new and different domains (medical, remote sensing,
material inspection, etc.) is crucial, we would like to develop self-supervised or few-shot learning
methods that can learn to detect boundaries quickly on new domains.

We stress that in our context, there is a clear distinction between segmentation and boundary detection.
In segmentation, the algorithm must be consistent in that the same texture in different image regions
must be consistently labeled with the same label. In contrast, in boundary detection, all that is needed
is to detect the boundary between two different textures. As such, there is a need for new assessment
methods that will allow distinction between closely related (and occasionally overlapping) vision
tasks, with special emphasis on quantitative measures for semantic-less boundary detection, such as
the performances of the new tools given differential perspectives and textural-oriented image-sets.

Henceforth, we formulate and define our problem: Universal semantic-less texture boundary
detection. A suitable solution to the problem [section 4] must successfully detect boundaries of
unseen textures without regard to semantic meaning. The solution will be required to learn and
generalize to detect texture boundaries on images of videos from single or multiple datasets and to be
tested across domains on out-of-distribution textures. The test benchmark dataset will be formed from
known texture datasets, including ones that are specific for microscopy and metallography [section 3].

2 Background – Texture Synthesis, Analysis, and Boundary Detection

Although texture analysis is an important research area in computer vision, there is no precise
definition of the notion of texture. The main reason is that natural textures often display different
yet contradicting properties, such as regularity versus randomness and uniformity versus distortion,
which can hardly be described in a unified manner.

Following these properties, textures can be schematically divided into two main categories by their
degree of randomness. Generally, the complexity of texture analysis corresponds to the degree of
randomness imposed within it. A regular texture is formed by regular tiling of easily identifiable
small primitives organized into strong periodic patterns. On the other hand, a stochastic texture
exhibits less noticeable elements and displays rather random patterns.

The research on texture perception dates back to the seminal work of Julesz [26], who conjectured
that humans cannot distinguish between textures with identical second-order statistics. He proved his
conjecture wrong [25], though the concept that image textures could be modeled based on low-order
statistics remained. He later introduced textons as the basic units of texture [7].

Texture synthesis, extensively applied in image editing and computer games, employs classic
frequency domain analysis and synthesis techniques such as those introduced by Heeger and Bergen
[20], De Bonet [9], and Portilla and Simoncelli [39], which utilize statistical properties to generate
new textures, while non-parametric approaches, including methods by Efros and Freeman [16],
Kwatra et al. [31], and others [48, 44, 6], achieve texture synthesis by sampling patches from the
input texture image and matching their distribution to the input texture.
Deep learning for texture synthesis by Gatys et al. [18] follows the approach of Heeger and Bergen [20]. Instead of matching the histograms in the image pyramid, they match the Gram matrix of different feature maps of the texture image, where the Gram matrix measures the correlation between features at selected layers of a neural network. Subsequent works later improved this approach [45, 42].

Alternatively, one can use a generative adversarial network (GAN) to synthesize textures that resemble the input exemplar. Li and Wand [32] used a GAN combined with a Markov Random Field to synthesize texture images from neural patches. Liu [35] improved the method of Gatys [18] by adding constraints on the Fourier spectrum of the synthesized image, and Li [34] use a feed-forward network to synthesize diversified texture images. Zhou [51] use GANs to spatially expand texture exemplars, extending non-stationary structures. Frühstück [17] synthesize large textures using a pre-trained generator, which can produce images at higher resolutions.

Texture analysis is often associated with semantic segmentation and can be roughly divided into two parts: Semantic Segmentation and Instance Segmentation. In Semantic Segmentation, each pixel is assigned a label of the class (i.e., road, vehicle, sky, person, etc.) it belongs to. In Instance Segmentation, each pixel is assigned a label of the class and the instance it belongs to (i.e., two different people will be assigned different labels).

Recently, the two have been combined into a single, holistic approach, termed Panoptic Segmentation, where the goal is to assign each pixel its class label, and in case there are multiple instances of the object, assign the different objects a different label. Panoptic Segmentation is used for various applications such as Autonomous Driving and general image understanding.

Another closely related branch of texture analysis is that of **Boundary Detection**, where the goal is to detect meaningful boundaries/interfaces between textures, cells, crystallites, etc. This branch evolved from the problem of edge detection, where edge detection is concerned with detecting changes in intensity values, while boundary detection is concerned with detecting boundaries between regions (i.e., textures). Traditional methods mostly focus on low-level cues. For example, Martin et al. [37] proposed a probabilistic boundary (Pb) detection module that learns to detect boundaries in images using local brightness, color, and texture cues. Dollár and Zitnick [15] use Structured Forests to map local image patch to local edge maps. A long line of work focused on extending the local approach to take global cues into consideration as well.

A sequence of papers [8, 43, 30] suggested using deep features to improve image boundary detection. Common to all is the use of deep features as the space in which to detect boundaries. Exploiting multi-scale representations and dilated convolutions helped He et al. [19] push the state-of-the-art in the field even further. Recently, Pu et al. adapted Transformers for boundary detection [40]. Their approach is based on a two-level Transformer architecture, where the first level captures global scene information, and the second refinement level calculates the boundaries. Their network achieves state-of-the-art results on several datasets [24], including the Berkley Segmentation Dataset [3]. The latest advancement using Transformers for this task is the Segment Anything Model (SAM) [29], which presents a significant step forward while also having limitations in professional data, especially in textural and medical imaging [23, 21].

Common to all these methods is the strong connection they make between object boundaries and boundary detection. We, on the other hand, are interested in Markov Boundary Detection. This means we do not care about global (non-Markov) scene information when making a local boundary detection decision. This also means we are not interested in segmentation because segmentation implies consistent labeling. That is, a segmentation algorithm should assign the same label to the same texture anywhere in the image plane. We, on the other hand, are only interested in the existence of boundaries between textures.

3 Dataset – Texture Boundary in Metallography (TBM)

Metallography analysis offers a wonderful test bed to develop novel Computer Vision algorithms for texture analysis and synthesis. We believe such algorithms can be transferred as is or with slight modifications to other domains in Computer Vision and beyond. Thus, aside from the common work on current relevant general image segmentation datasets (such as MM Segmentation, BSDS500, ADE20K, CityScape, Camouflage, Brodatz, Real World), we construct a database, namely Texture.
Boundary in Metallography (TBM) that is as general as possible, with annotations that correspond to the task of texture boundary detection, in microscopy, and especially in metallography. This database serves as a benchmark for our research and the following future works to establish the direct contribution to the needed sciences. In TBM, metallographic images of approximately 1.2 mm × 0.8mm were used, while multiple experts in material science tagged each image to verify for no annotator bias. Specifically, in TBM, we have created a dataset for metallographic texture boundary detection, consisting of cropped squares (128 × 128 pixels) of said metallographic scans with corresponding expert manual tags of grains’ boundary as ground truth (320 images).

Figure 1: Metallographic textures (from left): Zoomed metallography with impurities; Removed impurities using deep inpainting; and failed semantic segmentation with Segment Anything [29].

Figure 2: Metallographic image input and the supervised GB semantic segmentation.

4 Preliminary Results and Path to Solution

Preliminary Results: An end-to-end computer vision approach for quantitative metallography was presented in [41]. [41] presented an integrated solution for quantifying the quality of a metallographic image using deep semantic segmentation for both impurities and grain boundary, generative impurities inpainting, and impurities anomaly detection. However, the algorithms in that work assume an extensive annotated database that was supervised by material scientists and was tailored specifically for that work, such as TBM. It was used for semantic segmentation using U-Net, with limited accuracy results. Our suggested research complements this work, as it relaxes the task-specific data assumption and considers a limited to zero supervision UTBD approach for different microscopy inference tasks.

Consider, for example, Figure 1. It shows a microscopy image of a complicated alloy from [41] after the removal of the impurities using deep inpainting and a failed attempt to use alleged universal segmentation models [29]. We aim to detect the boundaries between the different textures in the image (and in other images of the same alloy with other different textures. For example, Figure 2a). Figure 2b shows the result of texture boundary detection on the image from Figure 2a using the previously mentioned state-of-the-art semantic segmentation tool, tailored for metallography [41]. A sensitive eye will notice that while many edges were detected correctly, others were not (Figure 2c). Of course, this is due to the fact that such images are texture but not edge or semantically oriented.

To evaluate the context role in modern boundary detection, we ran EDETR [40], an edge detection transformer model [24] in two settings. In both cases, we randomly select windows of size 100 × 100. In the first one, we ran EDETR on the entire image but evaluated the algorithm’s performance only on the random window. In the second setting, we placed the randomly cropped window in the center of the image. Both settings were evaluated in terms of the edge detection performance on the randomly selected windows.

Texture Boundary in Metallography (TBM) dataset: https://doi.org/10.5281/zenodo.8386997
of an otherwise completely black image and then ran EDETR. In both cases, we used EDETR, which was trained on the training set of BSDS500 and tested on the images of the test set.

During the evaluation, three key metrics are employed to assess performance: fixed contour threshold (ODS), per-image best threshold (OIS), and average precision (AP). Results are shown in Table 1a. As can be seen, context plays an important role in the algorithm’s performance. A few examples can be seen in Figure 3. The same experiment was repeated on the TBM dataset of 128 × 128 images, with 60 × 60 windows. The results are shown in Table 1b and examples are shown in Figure 4.

<table>
<thead>
<tr>
<th>Setting</th>
<th>ODS</th>
<th>OIS</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDETR → Crop</td>
<td>0.684</td>
<td>0.764</td>
<td>0.680</td>
</tr>
<tr>
<td>Crop → EDETR</td>
<td>0.589</td>
<td>0.274</td>
<td>0.582</td>
</tr>
</tbody>
</table>

(a) BSDS500 dataset natural images.

<table>
<thead>
<tr>
<th>Setting</th>
<th>ODS</th>
<th>OIS</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDETR → Crop</td>
<td>0.813</td>
<td>0.831</td>
<td>0.189</td>
</tr>
<tr>
<td>Crop → EDETR</td>
<td>0.393</td>
<td>0.412</td>
<td>0.310</td>
</tr>
</tbody>
</table>

(b) TBM dataset textural microscopy images.

Table 1: Two experiments on the rule of context in texture boundary detection.

Figure 3: Examples of context importance in EDTER that was trained on BSDS500. From left to right: input window, ground truth, crop followed by EDTER, EDTER on full image followed by crop.

Figure 4: Examples of context importance in EDTER that was trained on metallographic database. From left to right: input window, ground truth, crop followed by EDTER, EDTER on full image followed by crop.

Path to Solution: Our proposed approach will center on developing a UTR through the utilization of a pre-trained Vision Transformers (ViT) inpainter model [33][47]. The UTR will aim to impart the model with a profound understanding of textures, completely independent of semantic constraints. The pre-training phase will leverage the DTD dataset [11], an extensive texture database encompassing 5640 images spanning 47 diverse texture categories. During this phase, the inpainter model will learn to comprehend an array of textures in a semantic-less fashion, devoid of specific object or label associations. Subsequently, fine-tuning will be carried out to adapt the model for UTBD. This will involve the reconfiguration of the model to predict pixel-wise segmentation masks that delineate texture boundaries, as opposed to inpainting missing regions. Training data for fine-tuning can be sourced either from labeled texture segmentation datasets (such as Real-World Textures [27][28]) or even classic image segmentation datasets. In cases where semantic context appears, it is possible to extract from each image a set of proper sub-images that disregard the original semantics or randomly disassemble and reassemble the whole image (and the labels, correspondingly) in different orientations for the same purpose of achieving textural semantic-less set. The adapted model will then undergo testing on the TBM dataset, with performance evaluation against ground truth labels provided by domain experts. This comprehensive approach will result in a versatile UTBD capable of accurately detecting texture boundaries across various domains and applications.
Acknowledgments

This work was supported by the Israeli Ministry of Defence (MAFAT), the Pazy Foundation, and Intel Corporation (oneAPI Center of Excellence program). Computational support was provided by the NegevHPC project [1]. The authors would like to thank Gabi Dadush, Israel Hen, and Emil Malka for their hardware support on NegevHPC.

References

