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Abstract

A common task across the physical sciences is that of model reduction: given a
high-dimensional and complex description of a full system, how does one reduce it
to a small number of important collective variables? Here we investigate model
reduction for dynamical systems using the information bottleneck framework. We
show that the optimal compression of a system’s state is achieved by encoding
spectral properties of its transfer operator. After demonstrating this in analytically-
tractable examples, we show our findings hold also in variational compression
schemes using experimental fluids data. These results shed light into the latent
variables in certain neural network architectures, and show the practical utility of
information-based loss functions.

1 Introduction

An exhaustive description of a physical system is usually impractical due to the sheer volume of
information involved. One often seeks to simplify it, so that it becomes tractable in practice. This
procedure, known as model reduction, appears in many guises depending on the system studied.
As an example, a chemical reaction may be described by tracking all the positions and velocities
of the participating atoms. A much simpler description can be obtained by focusing on discrete
chemical species: the reaction is then modelled by a single continuous variable parameterizing the
path between these states. This description can be further simplified by considering only discrete
transitions between the chemical species [1, 2, 3].

It is of great interest to what extent the model reduction process can be automatized by computers,
where reduced models may be used to speed up expensive simulations or extract collective variables
in complex systems. Recent developments include the use of so-called Koopman operators that
effectively linearize the dynamics, combined with deep learning techniques such as autoencoders to
reconstruct and compress the dynamics from observations [4, 5, 6, 7, 8].

Here, we cast model reduction as an information-theoretic problem of finding a lossy compression
scheme whose variables maximize the mutual information with the future state – an approach
known as the Information Bottleneck (IB) [9, 10]. Using explicit analytical calculations, we connect
this approach to the operator-theoretic formalism of dynamical systems and show that the optimal
compression reflects spectral properties of the transfer operator. We then show that this connection
still holds for so-called variational IB, where the compression is achieved by a neural network. These
findings reveal that even when trained on noisy and high-dimensional data, latent variables in these
neural networks can be surprisingly interpretable.
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Figure 1: Model reduction in physical systems can be performed by selecting the slowest-decaying
eigenfunctions of the transfer operator. One can alternatively frame the problem as finding a
compression of the state x which is maximally informative of the future. We show that these two
approaches are related.

Related Work Several works have used the information bottleneck framework to understand
physical systems, for example in the context of the real-space renormalization group and the iden-
tification of order parameters [11, 12, 13, 14], for quantum systems [15], or in the study of time
series compression [16, 17, 18]. Conversely, physics-inspired approaches have been used to study the
bifurcation structure of information bottleneck solutions [19, 20, 21]. We apply a similar machinery
to understand IB restricted to dynamical systems, allowing us to directly interpret the encoder’s
dependence on physical quantities.

Independent of information theory, attempts have been made to use neural networks to directly
learn approximate linearizations of the transfer operator [5] and compress dynamical systems with
(variational) autoencoder architectures [8]. Our approach shows that the nice properties of such
compressions arise organically when using information-theoretic loss functions.

2 Optimal encoders reflect spectral content of the transfer operator

To connect the familiar quantities of dynamical systems with those of information theory, we start by
formulating model reduction as a compression problem. We describe the state of a dynamical system
by a random variable: let pXt(x) be the probability of finding a system in a state x at time t (Xt

denotes the corresponding random variable). We wish to identify a reduced description of the system
in terms of so-called relevant variables h (Ht is the corresponding random variable). A reduction
of x into h can be understood as a probabilistic encoding pHt|Xt

(h|x) [aka p(h|x)] which gives the
probability of attributing the value h to the state x. For discrete h, this can be understood as a soft
partition of the state space of x.

For p(h|x) to be a useful reduction, the resulting variable h should contain just enough information
to predict the state of the system in the future. To formalize this prescription, we use the so-called
Information Bottleneck framework [9]: the encoding pH|X is chosen to minimize the information
bottleneck (IB) Lagrangian

LIB[pHt|Xt
] = I(Xt, Ht)− βI(Xt+∆t, Ht). (1)

This objective finds an encoding which discards as much information about the current state xt as
possible while retaining information about the future state xt+∆t, as proposed in Ref.[10].

We connect the properties of the optimal encoder with those of the dynamics of Xt by considering
the operator U governing its evolution, known as the transfer, or Perron-Frobenius, operator:

pXt+∆t
(x) = [UpXt

](x). (2)
Purely deterministic systems can be handled in this framework by taking measurement uncertainty
into account. The information contained in Xt and Xt+∆t is, for reversible dynamics, exactly the
same, but only in the limit of infinitely fine resolution.

Starting from the form of the optimal encoder computed in [9] and using the formal spectral decom-
position of the transfer operator we find that the encoder can be expressed as

p∗β(h|x) =
1

N (x)
p∗β(h) exp

[
β
∑
n

eλn∆tϕn(x)fn(h)

]
, (3)
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Figure 2: IB learns eigenfunctions of the adjoint transfer operator (a) Brownian particle
oscillating in a triple well potential. (b) Information contained in an optimal encoding changes in
discrete steps as the compression parameter β is varied. (c) At the first transition, the deviations of the
encoder from a uniform encoder are approximately given by p(h|x) ∼ exp(βeλ1∆tϕ1(x)f1(h)). (d)
Fluid flow past a disk-shaped obstacle exhibits periodic vortex shedding in a so-called von Kármán
street. (e) Dynamics in latent space (blue) compared to the evolution of the dominant Koopman mode
amplitudes obtained via DMD (green). (f) Time evolution of one component of the latent variable
(h1, blue) and Koopman mode amplitude (green). (g) Comparison between the first Koopman mode
(m⃗(1) = ∂ϕ1

∂v⃗ ) and those extracted from VIB (m⃗(IB) = ∂h
∂v⃗ ).

where λn and ϕn(x) are the eigenvalues and left eigenvectors of U , and fn(h) are independent of x.

When β < 1, Eq. (3) is minimized by a trivial encoder p(h|x) = p(h). In this case, LIB = 0 and no
information passes through the bottleneck. As β is increased past a critical value βcrit, information
is suddenly allowed into the relevant variables. Near this transition, the form of the encoder can be
understood by perturbatively expanding in β, similar as in [19, 21]. Immediately after this transition
and for long times ∆t, the optimal encoding depends on x only through the first eigenfunction ϕ1(x),

p∗β(h|x) ∼ exp
[
βeλ1∆tϕ1(x)f1(h)

]
. (4)

Additional terms in the spectral expansion are included at subsequent IB transitions as β is further
increased (see Fig.2b). However, their contribution to the relevant information depends on factors
such as the time horizon ∆t and the spectral gap in the system.

3 Numerical examples

We illustrate the above results by considering a Brownian particle trapped in a confining triple-well
potential (Fig. 2a). In the overdamped limit, the state of the particle is completely determined by its
position Xt ∈ R, which we compress into a discrete variable Ht ∈ {0, 1, ..., NH − 1}. To exactly
solve the IB optimization problem we numerically approximate the transfer operator using an Ulam
approximation [22, 23]. In Fig. 2b we show how the encoded information changes with β, exhibiting

3



discrete jumps at β1 and β2. At these jumps, the encoder gains a dependence on x through the first
and second eigenfunctions ϕ1(x) and ϕ2(x) of the transfer operator. This can be understood from
the stability of the uniform encoder: at β1, it becomes unstable to perturbations by ϕ1(x), which is
reflected in the form of the optimal encoder (Fig. 2c).

Exactly solving the IB objective is difficult as it requires knowledge of the exact conditional dis-
tribution p(xt+∆t|xt) which is intractable in practice. The IB optimization problem can, however,
be solved approximately by finding an encoder which minimizes a tractable upper bound on the
Lagrangian Eq. 1. We achieve this by bounding the terms as

I(Xt;Ht) ≤ DKL(p(h|x)∥p̂(h)) (5)
I(Xt+∆t;Ht) ≥ INCE(Xt+∆t;Ht), (6)

where p̂(h) is a variational approximation to the marginal p(h) [24] and INCE is a so-called noise-
contrastive estimate of the mutual information [25]. The Kullback-Leibler divergence DKL is obtained
analytically by using a Gaussian ansatz for p(h|x) and letting the marginal p̂(h) be a spherical unit-
variance Gaussian [24]. Concretely, encoded variables Ht are sampled from p(Ht|Xt) by computing

ht = fW (xt) + σW (xt)η, (7)

where fW and σW deterministic functions modeled by neural networks with parameters (weights)
W , and η is a Gaussian random variable with unit variance. This procedure is called variational IB
(VIB). The benefit of this variational method is that the loss function can be computed directly from
samples, and access to the full distribution p(xt, xt+∆t) is not required.

Our above results provide an interpretation of VIB latent variables even for high-dimensional systems,
which we illustrate by considering the flow of a fluid past a cylinder (Fig. 2d). The system is
characterized by a high-dimensional velocity field v⃗(x) ∈ R2×Npixels , where Npixels ∼ O(105). At
Reynold’s number Re ≈ 150, the fluid undergoes periodic vortex shedding behind the cylinder,
forming what is known as a von Kármán street. In this regime, the slowest varying functions of the
state variable v⃗(x⃗) are those capturing the oscillatory wake which does not decay in time. These
oscillations are captured in the VIB latent variables [h0, h1] which are periodic in time (Fig. 2e, f).

Figure 3: (a) Experimentally-
imaged von Kármán street ex-
tracted from Ref. [26]. (b) Trajec-
tory of learned encoding variables
in the latent space. (c) Koopman
mode m(IB), derived as in Fig. 2.

In this system, eigenfunctions of the adjoint transfer op-
erator are linear functions of the state variable, ϕn[v⃗] =
⟨v⃗(x⃗), m⃗(n)(x⃗)⟩, where m⃗(n) is the n-th “Koopman mode”.
We compute these modes using dynamic mode decomposition
(DMD) [27, 28]. Note that these modes are given by gradients
of the eigenfunctions ∂ϕn/∂v⃗(x⃗). This suggests that we can
study the learned function h[v⃗] = h0[v⃗] + i h1[v⃗] by examining
its gradients with respect to the input, ∂h/∂v⃗(x⃗).

Based on our analytical results, we expect gradients of the VIB
encoder to reflect the dominant characteristics of the subleading
Koopman mode m⃗(1). This is borne out in Fig. 2g, suggesting
that VIB not only recovers the essential oscillatory nature of the
dynamics, but does so by learning the correct slowly varying
functions of the state variable given by the Koopman eigenfunc-
tions. We emphasize that VIB, which is a deep neural network,
learns the true Koopman eigenfunction rather than an arbitrary
function with the correct periodicity, as could be obtained from
the flow velocity at one well-chosen pixel.

Finally, we apply VIB to a von Kármán street experiment found
in the Youtube video [26]. The vortex street is visualized by a
dye injected at the site of the obstacle, which is immersed in water flowing uniformly to the right
(Fig. 3a). Again, we find that VIB learns clear cyclical dynamics of the latent variables (Fig. 3b), and
gradients of the latent variables are similar to those in (Fig. 3c).

4 Conclusion

Here we have characterized the connection between optimal model reduction, phrased in terms of
information theory, and the spectral content of the transfer operator. We showed that this connection
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applies even when using approximate variational methods on real data. This suggests that information
theoretic objectives provide a natural path towards physical interpretability of latent variables in deep
neural networks.
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