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Abstract

In astrophysics, experiments are impossible. We thus must rely exclusively on
observational data. Other observational sciences increasingly leverage causal infer-
ence methods, but this is not yet the case in astrophysics. Here we attempt causal
discovery for the first time to address an important open problem in astrophysics:
the (co)evolution of supermassive black holes (SMBHs) and their host galaxies. We
apply the Peter-Clark (PC) algorithm to a comprehensive catalog of galaxy proper-
ties to obtain a completed partially directed acyclic graph (CPDAG), representing
a Markov equivalence class over directed acyclic graphs (DAGs). Central density
and velocity dispersion are found to cause SMBH mass. We test the robustness of
our analysis by random sub-sampling, recovering similar results. We also apply
the Fast Causal Inference (FCI) algorithm to our dataset to relax the hypothesis of
causal sufficiency, admitting unobserved confounds. Hierarchical SMBH assembly
may provide a physical explanation for our findings.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



1 Introduction

The puzzle of supermassive black hole (SMBH) and host galaxy coevolution is a long-standing open
problem in astronomy [4, 9] More recently, the detection of high-redshift quasars reignited the debate
on the formation mechanisms of SMBHs in the early Universe [10]. The main issue we face when
trying to understand SMBH and host galaxy coevolution is the direction of causality: are galaxy
properties driving SMBH assembly or is SMBH feedback shaping observed galaxy properties? While
it is likely that a feedback loop exists, with SMBH mass at a given time affecting galaxy properties at
a later time and galaxy properties in turn affecting SMBH mass at an even later time, we only have
data about a given galaxy and its SMBH at one point in time.

Given this situation, most of the research on this topic in astronomy has been based either on
identifying observational correlations [11, 5] or on developing models, based mainly on numerical
simulations [16]. Here we break this pattern, introducing a method that to our knowledge has never
before been applied in the field: we apply causal discovery to a state-of-the-art sample of galaxies.

2 Data

We consider a set of 83 early-type galaxies with directly-measured SMBH masses compiled by
[6, 15, 3, 1, 12, 2, 13, 14]. The variables we consider are as follows: SMBH mass (MBH ), the stellar
bulge (spheroid) mass (M∗

sph), central velocity dispersion (σ0sph), effective radius of the spheroid
(Resph ), and the density at the SMBH sphere of influence ρsoi measured by [14]. Fig. 1 summarizes
the definitions underlying these variables. These variables are sufficient to characterize the SMBH
and its environment, the central spheroid of the host galaxy. Masses are measured in Solar units,
lengths in parsec, and velocities in km/s. Following standard practice, we consider the base-10
logarithms of these quantities. A summary table of the sample is reported in Tab. 1. A pair plot for
these variables is shown in Fig. 2.

ρsoi MBH σ0sph Resph M∗
sph

mean 2.70 8.54 2.33 0.30 10.84
std 0.83 0.91 0.18 0.67 0.80
min 0.71 5.74 1.54 -1.24 8.03
max 4.67 10.30 2.59 1.49 12.26

Table 1: Summary of the early-type galaxy data set.

3 Methods

3.1 PC algorithm

The Peter and Clark (PC) algorithm [17] is one of the most well-known and time-tested causal
discovery algorithms, used to infer causal relationships from observational data. The algorithm seeks
to identify a skeletal structure of a causal graph by iteratively testing conditional independencies in
the data. Initially, it assumes a fully-connected undirected graph among all variables. In the first
phase, edges are removed based on conditional statistical independence tests, gradually increasing
the conditioning set size. After obtaining the undirected skeleton, the algorithm enters the orientation
phase, where it employs a set of rules to determine the direction of the remaining edges. However, it is
not possible in general to orient all the edges, leading to a Partially Directed Acyclic Graph (PDAG),
representing a Markov equivalence class of Directed Acyclic Graphs (DAGs). This graph captures
the causal relationships that are identifiable from the observed data under certain assumptions, such
as faithfulness, causal sufficiency, and acyclicity.

We use the PC algorithm in the implementation by [19] through the causal-learn library in Python,
relying on the Kernel Conditional Independence test [KCI; 18]. The KCI test is a non-parametric
method used to assess the conditional independence between two random variables given a set of
conditioning variables. The principle underlying KCI is to exploit the properties of reproducing kernel
Hilbert spaces (RKHS). The idea is to embed the distributions of the variables into high-dimensional
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Figure 1: Early-type galaxy schematic, with a possible large-scale, rotationally-supported disk. The
spheroid or bulge is the central, pressure (dispersion) supported part of the galaxy. The radius
containing half its luminosity or effective radius gives a measure of its size. The SMBH is typically
located in a central position. The sphere of influence of the SMBH corresponds to the region where
stellar motions are dominated by the SMBH gravity.

Figure 2: Pair plot of our data set of galaxy properties.
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Figure 3: CPDAG learned by the PC algorithm on our data set. Directed edges represent causal
dependencies, undirected edges represent lack of independence.

Hilbert spaces and then measure the independence in these spaces using a kernel-based distance
metric. Essentially, if two variables are conditionally independent given a third variable, their joint
distribution can be factorized into two separate distributions, and this factorization manifests as
orthogonality in the RKHS. The KCI test statistically evaluates this orthogonality to decide whether
conditional independence holds. By using kernel methods, the KCI test can capture nonlinear
dependencies.

We set the threshold for rejecting the null hypothesis of conditional independence to a p-value of 0.1.
This is a relatively generous threshold, erring towards rejection, meaning a graph with more edges.
We also considered a value of 0.01, obtaining slightly different results, discussed in the following.

4 Results

Fig. 3 shows the Complete Partially Directed Acyclic Graph (CPDAG) which represents the Markov
equivalence class learned by the PC algorithm on our data set. The main result is that SMBH mass is
a direct effect of central density within the sphere of influence and of velocity dispersion.

4.1 Physical interpretation

Bondi–Hoyle–Lyttleton accretion [7] on a black hole predicts that mass growth is determined by the
ambient density and the velocity dispersion of the medium. Similarly, repeated mergers of seed black
holes, are likely governed by a similar dependence. with encounter cross-section being determined
by relative velocity in the gravitational focusing limit. This is an indication that our causal discovery
approach uncovered a genuine physical relation between bulge properties and SMBH mass, especially
if we admit that currently observed quantities such as the stellar velocity dispersion are likely to trace
primordial quantities.

4.2 Robustness

The PC algorithm relies on (conditional) independence tests between variables. With finite data, the
test may fail to find a dependence that is actually present, or vice versa deem that two variables are
dependent when they in fact are not. To test this, we change the value of the threshold for conditional
independence used by the KCI test from 0.1 to 0.01. The resulting CPDAG is almost identical to the
one found initially (shown in Fig. 3) with the only difference being that the edge between velocity
dispersion and bulge stellar mass is missing. The main result regarding SMBH mass being caused by
central density and velocity dispersion stands unaffected.

We also test the reliability of the results we obtained by re-running our analysis on a subset of the
data. We repeat 10 times a procedure where we randomly exclude 10% of our data set and run the PC
algorithm on the remaining 90%. This results in five unique different CPDAGs. Three are essentially
minor variations on the original computed on the whole data set and are presented in Fig. 5. These
account for 60% of the CPDAGs we computed in this fashion. The other two are shown in Fig. 6
(accounting for 30% of the runs) and in Fig. 7 (accounting for 10% of the runs). The last two causal
structures differ from the one we found using the whole data set in that black hole mass affects bulge
stellar mass, but the result that velocity dispersion and central density cause SMBH mass, still holds.
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Figure 4: PAG learned by the FCI algorithm on our data set. Directed edges represent causal
dependencies, undirected edges represent lack of independence, like in Fig. 3. However here empty
circles denote a relation that may be due to an unobserved confound.

4.3 Limitations

Early galactic evolution is rife with quantities we are not able to measure directly. The causal
sufficiency assumption underlying the PC algorithm, that is the absence of unobserved confounds,
is, therefore, a strong assumption to make. There is some precedent in the literature suggesting that,
indeed, observed correlations may be the result of a common mechanism of accretion, rather than a
direct causal link [8]. An additional source of confounds is the dynamical evolution of the system
itself: past values of any variable may in principle causally affect both the current values of that
variable and the current values of other variables. In this regard it should also be noted that we did
not consider the possibility of cyclic causal relations. We are considering testing our approach in the
future on simulation time-series data, where a ground truth is available and the dynamical nature of
the data generating process is under our control.

To address the issue of unobserved confounds we applied the Fast Causal Discovery [FCI; 17]
algorithm to our data set. FCI learns a Partial Ancestral Graph (PAG), shown for our data in Fig. 4.
PAGs contain additional edge types with respect to CPDAGs. In particular the edges marked with an
empty circle represent a situation where there is an association between variables (the null hypothesis
of statistical independence has been rejected) but the nature of the association may not be causal. If
this is the case, the association is due to one or more unobserved confounds. The FCI algorithm on
our dataset indeed cannot decide whether central density and velocity dispersion cause SMBH mass
(as found by the PC algorithm) or whether the observed association is due to unobserved confounds.
It does however rule out SMBH mass causing central density and velocity dispersion.

5 Conclusions

We applied causal discovery via the PC and FCI algorithms for the first time to a state-of-the-art data
set of dynamically measured SMBHs and their host early-type galaxy properties. The causal structure
we learned from this data suggests that SMBH mass is the effect of central velocity dispersion and
density at the SMBH sphere of influence. The result is robust to changes in hyperparameters such
as the threshold for statistical significance in the KCI independence test used by the PC algorithm
and to random subsampling of our data set. From the physical point of view, this suggests that the
bulge properties determine the SMBH mass by controlling SMBH assembly, which likely takes place
through repeated mergers of seed black holes.
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A Additional figures

Figure 5: Three CPDAGs learned by the PC algorithm on a random subsample containing 90% of the
original data set.
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Figure 6: CPDAG learned by the PC algorithm on a random subsample containing 90% of the original
data set.

Figure 7: CPDAG learned by the PC algorithm on a random subsample containing 90% of the original
data set.

8


	Introduction
	Data
	Methods
	PC algorithm

	Results
	Physical interpretation
	Robustness
	Limitations

	Conclusions
	Additional figures

