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Abstract

In the realm of X-ray spectral analysis, the true nature of spectra has remained
elusive, as observed spectra have long been the outcome of convolution between
instrumental response functions and intrinsic spectra. In this study, we employ a
recurrent neural network framework, the Recurrent Inference Machine (RIM), to
achieve the high-precision deconvolution of intrinsic spectra from instrumental
response functions. Our RIM model is meticulously trained on cutting-edge
thermodynamic models and authentic response matrices sourced from the Chandra
X-ray Observatory archive. Demonstrating remarkable accuracy, our model
successfully reconstructs intrinsic spectra well below the 1-σ error level. We
showcase the practical application of this novel approach through real Chandra
observations of the galaxy cluster Abell 1550—a vital calibration target for the
recently launched X-ray telescope, XRISM. This work marks a significant stride in
the domain of X-ray spectral analysis, offering a promising avenue for unlocking
hitherto concealed insights into spectra.

1 Introduction

We describe a methodology to deconvolve intrinsic X-ray spectra from the instrumental response
using machine learning; we apply this to the case of galaxy clusters. Galaxy clusters harbor a large
reservoir of hot gas (∼ 107 − 108), called the IntraCluster Medium (ICM), which accounts for the
majority of baryonic matter in the cluster (e.g. Fabian and Allen 2003). This gas consists primarily
of ionized hydrogen and helium but also contains numerous heavier elements (e.g. Mushotzky
1984; Mohr et al. 1999; Loewenstein 2003). Emission mechanisms such as thermal bremsstrahlung,
bound-free atomic transitions, and the collisional excitation of hydrogen are responsible for the
X-ray continuum (e.g. Markevitch and Vikhlinin 1997; Ettori and Fabian 1998; Sarazin et al. 1999;
Markevitch et al. 1998). The collisionally-ionized gas also exhibits strong emission lines in its spectra
coming from the excitation of heavy elements such as nickel and iron.

Observed galaxy cluster spectra in the X-ray regime, S(E′), are the result of an integration between
the intrinsic spectrum of the cluster, F (E), and the instrumental response, R(E′, E): S(E′) =∫∞
0

R(E′, E)F (E)dE + η, where E′ is the measured photon energy, E is the true photon energy,
and η is the noise generally modeled by a Poisson distribution Pois(λ). In this work, we only consider
high signal-to-noise (SNR>50) observations where the noise approaches a Gaussian distribution
described as N (0, σ2I). Since we discretely sample the energies, the functional form is reduced to a
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matrix form, reducing the equation to

Si =
∑
j

RijFj + ηi. (1)

Finally, Despite the simplicity of this linear equation, the response matrix, Ri,j , is highly singular,
thus rendering a standard inversion impossible for complex models. Rhea et al. (2021) demonstrated
that even sophisticated regularization techniques such as the Moore-Penrose pseudo inverse and
Tikhonov regularization fail to resolve the issue.

In the last several years, a new machine learning algorithm known as a recurrent inference machine
(RIM) has been developed and shown to excel at solving inverse problems (Putzky and Welling
2017). The RIM has been used extensively to solve inverse problems such as deconvolution and
denoising (see for example Morningstar et al. 2019; Morningstar et al. 2018;Modi et al. 2021; Adam
et al. 2022; Adam et al. 2023). In the context of astrophysics, the RIM has been used to recover
undistorted images of background sources in gravitational lenses outperforming standard techniques
considerably. In a similar fashion, we use a RIM to solve our inverse problem, equation 1, and thus
uncover the intrinsic spectrum of an X-ray source. Machine learning has been previously used to
solve similar deconvolution problems in astronomy (e.g. Molnar et al. 2020). We demonstrate the
use of this algorithm on data from the Chandra X-ray Observatory – one of the world’s leading X-ray
telescopes.

While in this initial study, we demonstrate the RIM deconvolution method, once deconvolved,
multiple science applications become possible with the intrinsic spectra. For example, they could
be used as inputs to a convolutional neural network to predict point estimates of the underlying
thermodynamic parameters. With these estimates, we can apply the technique described in Legin
et al. (2023), which uses these quantities in a Simulation-Based Inference (Cranmer et al., 2020)
framework to recover posteriors on these parameters. We can also use the deconvolved spectra to test
the line-by-line calibration of X-ray telescopes since, for a calibration target, the source’s intrinsic
spectrum is non-changing. Therefore, any observed change in the deconvolved spectrum is a result of
errors in the response.

2 Data

We construct 50,000 synthetic X-ray spectra using state-of-the-art thermodynamic models
implemented in SOXS – a sophisticated modeling pipeline developed for X-ray observatories. We
sample widely over the parameters that influence the spectra. We use the APEC model, which simulates
the emission spectrum of a collisionally-ionized diffuse gas using a sophisticated database of atomic
transition lines, AtomDB (Smith et al. 2001; Foster et al. 2012). There are four primary variables
that dictate the shape of APEC spectra: the temperature of the gas, the relative metalicity of the gas
(i.e., what is the relative abundance of different metals – elements other than hydrogen and helium),
the redshift of the gas which corresponds to a shift in the observed wavelength of the emission lines,
and the normalization parameter which described the normalization of the model to the data. We
randomly selected from a uniform distribution of each parameter to construct our synthetic spectra;
the values were chosen to adhere to the values we find in galaxy clusters (e.g., McDonald et al. 2017;
Fabian 2012; Markevitch 1998). The temperature was set between 0.5 keV (kilo-electron Volts)
and 8.0 keV, corresponding to approximately 107K to 108K. The metalicity was sampled between
0.2 Z⊙ (solar metallicity) to 1.2 Z⊙. Since we wish to use this methodology to study nearby (i.e.,
low-redshift) objects, we allow the redshift to vary between 0 and 0.25. In figure 2, we show an
example intrinsic spectrum (left), an example response matrix (center), and an example observation
(right) created from the convolution between the response matrix and the intrinsic spectrum plus
noise.

We mined the Chandra X-ray Observatory archive1 to construct a set of 1000 response matrices. The
observations from which the response matrices were sampled were known galaxy clusters with long
exposures (Mushotzky 1984). However, the response matrix does not depend on the object observed.
Since R is the critical variable in our function and can change as a function of time and position on
the detector, sampling an ample amount of real data is critical. Using our forward model, equation 1,
we are able to construct mock observed spectra quickly. Moreover, we randomly construct the noise

1https://cda.harvard.edu/chaser/
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Figure 1: Schematic of the convolution applied by the ACIS instrument on Chandra. This graphic
demonstrates the response matrix’s profound effect on the observed spectrum. The true spectrum
is a typical emission spectrum from the ICM modeled using the apec model with a temperature
of 2.0 keV and a metallicity of 0.3 Z⊙. The response matrix was taken from a randomly chosen
ObsID (2707); the matrix displayed is the log of the response matrix. The noisy observation is
created by convolving the response matrix with the ground truth spectrum and then adding noise at a
signal-to-noise level of 50.

profile, η,where η is drawn from a Gaussian distribution representing a signal-to-noise of 30 to 100.
In making this choice, we restrict our models to only high-count statistics.

We test our trained network on real observations by the Chandra X-ray Observatory. We select NGC
1550 a dynamically stable galaxy cluster with a well-constrained global temperature and metallicity,
since it is the calibration target for the newly launched X-ray observatory XRISM (XRISM Science
Team 2020). This target was chosen because previous spectral analysis indicates that a single thermal
model is required to model the ICM emission fully (Kolokythas et al. 2020). After downloading the
raw observation data from the Chandra Archive (ObsID 3186 & ObsID 3187), we clean the data
using the chandra_repro (v.4.15) pipeline provided by the Chandra X-ray Center software group.
The spectrum is extracted by taking a large circular region centered on the centroid of the X-ray
emission, reaching an average signal-to-noise of 50. During the spectral extraction process, we also
calculate the region’s response matrix and the ObsID).

3 Methods

Our goal is to recover an estimate of the true spectrum F ∈ Rn
+ of a galaxy cluster given an observed

spectrum S ∈ Rm
+ from the Chandra X-ray Observatory. The observed spectrum is related to the

intrinsic spectrum by a linear response function R ∈ Rm×n and additive noise S = RF + η. Due to
the ill-posedness of this problem, we must introduce a regularization term, which is most naturally
viewed in a Bayesian settings as a prior distribution over the intrinsic flux p(F ). The maximum a
posteriori (MAP) solution maximizes the product of the likelihood p(S | F ) and the prior, which can
be written as follows

F̂MAP = argmax
F

log p(S | F ) + log p(F ) (2)

To solve this problem, we make use of a Recurrent Inference Machine (RIM) (Putzky and Welling,
2017). In this meta-learning framework, the prior or the regularization term is learned implicitly in a
neural network gθ with parameters θ, which solves equation (2) iteratively via a recurrent series akin
to gradient ascent

Ft+1 = Ft + gθ(Ft,∇F log p(S | F ),ht)

ht+1 = gθ(Ft,∇F log p(S | F ),ht)
(3)

where t ∈ {0, . . . , T − 1} is the step index and ht is an hidden state. Since the likelihood is Gaussian,
we can readily evaluate the likelihood for any trial point Ft using the formula

∇Ft
log p(S | Ft) = (S −RFt)

TC−1R (4)

where C ∈ Rm×m is the covariance of the additive Gaussian noise of a particular observation.

At each step of the recursion, the input of the neural network is the gradient of the log-likelihood
and the current best reconstruction. The architecture, based on previous works Morningstar et al.
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Figure 2: This graphic shows the results of the trained RIM on a randomly selected spectrum from the
test set. The top left panel shows the true intrinsic spectrum (solid blue) and the RIM solution (dashed
orange). Below, we report the residual between the true solution and the RIM solution normalized
by the noise level of the observed spectrum. In the top right panel, we show the observed spectrum
(solid blue) and the result of passing the RIM solution through the forward model (dashed orange).
Below, we report the residual between the two curves normalized by the observed noise level.

(2019), is a Convolutional Neural Network (CNN) augmented with Gated Recurrent Units (GRU;
Chung et al. 2014) to model the dynamical evolution of the recurrent series (3). After this, the output
is the reconstructed intrinsic spectrum, which we feed to the forward model in equation 1 to produce
a model, which we then use to evaluate the gradient of the likelihood wrt the solution (equation 4).
This output is then fed back in the network at the next step of the recursion. We use a mean squared
loss function:

L =
1

T

T∑
t=1

M∑
i=1

(x̂
(t)
i − xi)

2 (5)

where x̂
(t)
i is the current best reconstruction at time t and M is the total number of spectral channels

in the spectrum.

4 Results and Discussion

To asses the performances of the RIM on unseen data, we build a test set containing 1,000 new
examples containing 100 new response matrices and 100 new simulated spectra.

In figure 2, we show the results of the trained RIM on a randomly selected spectrum from the test set
of synthetic data. The graphic demonstrates that the RIM has accurately learned how to reconstruct
the underlying spectrum from just the observed spectrum through the gradient of the likelihood and
response matrix. The reconstructed intrinsic spectrum (dashed purple) fits the intrinsic spectrum
(solid blue) to less than 0.1σ error. The reconstructed intrinsic spectrum captures all the emission
lines in the true spectrum. On the right panel, we compare the observed spectrum and the modeled
convolved spectrum obtained by feeding the RIM solution through the forward model (without
adding noise). We display the residual which is the difference between the ground truth and the RIM
prediction. These residuals are consistent with noise, as they should for an accurate solution to the
inverse problem (see the bottom right panel of figure 2). these features disappear. Therefore, the RIM
effectively denoises the spectrum.
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Figure 3: On the left, we show the RIM recovered spectrum of NGC 1550 from ObsID 3186. In
the middle, we compare the observed spectrum of NGC 1550 (solid teal) to the RIM-reconstructed
spectrum that is created by applying the forward model to the RIM-recovered spectrum (dashed
purple). The reconstruction is in strong agreement with the observed spectrum, achieving a less than
1-σ disagreement between the noisy observed spectrum and the RIM reconstructed observation. A
valid solution to the inverse problem should leave residuals consistent with noise. On the right, we
show the residual between the observed spectrum and the result of the forward model of the RIM
reconstruction normalized by the noise level.

Figure 3 depicts the RIM reconstructed intrinsic spectrum of the central ICM emission of NGC 1550
(ObsID 3186) on the left panel, while, on the right panel, we plot the noisy observed spectra (solid teal)
and the RIM reconstructed spectrum (dashed purple). As expected, the recovered intrinsic spectrum
exhibits strong emission lines around 1 keV and an underlying power-law continuum. Moreover,
the right panel demonstrates that, when used in the forward model, the RIM reconstructed spectrum
matches the observed spectra below the 1-σ level in the busiest part of the spectrum (between 0.5
and 2 keV) and well below the 0.1-σ level throughout the rest of the spectrum. Although we only
show the results for one ObsID above, we obtain similar results using the other Chandra observation
ObsID 3187.

5 Summary and Future Improvements

In conclusion, we use a recurrent inference machine to deconvolve X-ray spectra of galaxy clusters
using only the observed spectrum and the associated response matrix. Our network achieves results
consistent with the noise statistics on our quasi-synthetic dataset constructed using state-of-the-art
thermodynamic models and real response matrices mined from the Chandra archive. Crucially, when
applied to the case of a high signal-to-noise observation of a galaxy cluster, Abell 1550, the RIM is
able to uncover the intrinsic spectrum; the RIM-reconstructed observation matches perfectly to the
noise level of the observation. This work serves as a proof-of-concept for a powerful novel paradigm
in X-ray spectral analysis.

Future work will consist of building this method into existing spectral fitting pipelines to improve
fit results and applying it to more high signal-to-noise observations of galaxy clusters. We also will
extend the suite of synthetic data to include more complex multi-temperature models in order to
extend this application to more complicated galaxy clusters. Additionally, this methodology is not
limited to the Chandra X-ray Observatory but can be used on any X-ray telescope if retrained using
its response matrices; we will be applying this method to recover the intrinsic spectra of XRISM
targets once its calibration is complete. This method opens up X-ray spectra to other deep learning
techniques to recover the thermodynamic parameters of the intrinsic source.
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