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Abstract

Stokes flow in repeated unit cell structures is extensively studied in applications
for many natural and engineering processes. However, for large numbers of cells,
resolving all scales can be prohibitively expensive using traditional numerical
methods. To make the problem tractable, these methods often rely on volume-
averaged approximations, resulting in accuracy issues. To address this, we propose
a novel data-driven component model reduction approach that is constrained by
the first-principle physics equation. This method employs reduced order modeling
(ROM) to identify crucial physics modes in small-scale unit components and
projects them onto the governing physics equation, creating a reduced model
with essential physics details. We incorporate discontinuous Galerkin domain
decomposition (DG-DD), enabling large-scale system construction without data
at such vast scales. Applying this approach to the incompressible Stokes flow
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equation, we achieve nearly 16 times faster solutions with a relative error of ≲ 2%,
even at scales 1000 times larger than the original problem.

1 Introduction

A computational framework for analyzing repeated unit cell structures under Stokes flow conditions
finds application in various domains. For instance, in the realm of tissue engineering, the design of
porous biomaterial scaffolds requires the solution of Stokes flow within repeated unit cell structures
[1]. Another instance arises in the context of liquid composite molding processes, where solving for
Stokes flow within repeated unit cell structures is a requisite step [2]. Additionally, such a framework
could be applied to studying the mass transfer properties of passive and active biological particles in
complex porous media [3, 4].

Extensive research has been dedicated to developing computational techniques for the accurate solu-
tion of the Stokes flow equation [5–8]. While various high-fidelity methods demonstrate effectiveness
in solving small-scale systems with only a few unit cells, the computational expenses escalate signif-
icantly when attempting to scale up the system, especially with increasing number of shapes, size
and configurations of unit cells. Non-dimensionalization of the problem may alleviate some of the
computational burdens associated with scaling; however, achieving geometric and dynamic similarity
in all scenarios is often unattainable. Consequently, there arises a need to solve the equation for
system sizes that are computationally prohibitive using traditional numerical methods. A commonly
employed approach is to model the unit cells using a volume-averaged approximation, although this
method is known to introduce errors associated with the closure problem. [9].

In contrast to the volume-approximation approach, projection-based reduced order models (ROMs)
effectively approximate the high-fidelity computational models with dominant physics modes iden-
tified from sample data [10–13]. As a result, they can minimize the impact of the approximation
by neglecting only the minor details. As its variant, component-level ROMs exhibit remarkable
capability in extrapolating outcomes for large-scale systems based solely on data from smaller unit
cells. These component-level ROMs have been successfully employed across a spectrum of physical
problems, including lattice-type structure design optimization [14, 15], microtruss structures [16],
heat conduction/exchange [17–19], linear elasticity [17], and acoustic Helmholtz problems [20].
However, it is important to note that the performance of these component-level approaches hinges
on their ability to accurately represent interface degrees of freedom through port interface bases.
The introduction of port bases can add complexity to the implementation of these component-level
methods.

To address this challenge, we propose a novel physics-constrained data-driven component-level
reduced order model (ROM) that offers both speed and accuracy in predicting outcomes for large-
scale systems, all without the need to introduce port interface bases. To accomplish this, we leverage
a discontinuous-Galerkin domain decomposition (DG-DD) approach. The component-level ROM
begins by identifying the dominant modes within a given physics system based on component-level
sample data. Subsequently, the governing equations for component-level Stokes flow physics are
projected onto the linear subspace defined by these identified modes, yielding a component-level
reduced order model. DG-DD, on the other hand, decomposes a larger global system into smaller-
scale components, where the component-level ROMs serve as foundational building blocks that are
seamlessly integrated into the overarching global-scale ROM. This integrated approach allows for
accurate and efficient predictions on a large scale, all while circumventing the need for port interface
bases.

The rest of the paper is organized as follows. In Section 2, we provide a concise overview of the
proposed component model reduction approach as it pertains to general partial differential equations
(PDEs). Following that, in Section 3, we illustrate the practical application of the overarching
framework discussed in Section 2 to the specific case of the Stokes flow equation.

2 General framework

We consider the global-scale domain Ω decomposed into M subdomains Ωm, i.e. Ω =
⋃M

m=1 Ωm.
All subdomains can be categorized into a few reference domains C ≡

{
Ω1,Ω2, . . .

}
. We consider a
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Figure 1: Illustration of component model reduction.

general linear partial differential equation for each subdomain physics state q̃m ∈ H1(Ωm),

B[q̃m] = Lm in Ωm, (1a)

with the continuity and smoothness constraints on the interface Γm,n ≡ ∂Ωm ∩ ∂Ωn,

Jq̃K ≡ q̃m − q̃n = 0 on Γm,n (1b)

{{n · ∇q̃}} ≡ 1

2
(nm · ∇q̃m + nn · ∇q̃n) = 0 on Γm,n, (1c)

where nm is the outward normal vector of Ωm. DG-DD seeks an approximate solution q = {qm}
that satisfies the discretization of (1),

Bmqm +
∑

Γm,n ̸=∅

(Bmm Bmn)

(
qm

qn

)
= Lm ∀m, (2)

where Bmqm and Lm corresponds to the physics equation (1a), and the remaining terms to the
interface condition (1b–c). This discretized physics equation provides the base for component ROM.

The component-level solution qr is approximated as a combination of the dominant physics modes,

qr ≈ Φrq̂r, (3)

where the reduced solution q̂r is essentially the coefficients of the column modes of Φr. In ROM,
the proper orthogonal decomposition (POD) is used to extract Φr from sample solutions of (1a) on
the reference domain Ωr [21, 22]. The physics equation (2) is then projected onto the column space
of Φr,

B̂mq̂m +
∑

Γm,n ̸=∅

(
B̂mm B̂mn

)(q̂m

q̂n

)
= L̂m ∀m, (4)

with ROM operators B̂m = ΦT
mBmΦm, B̂ij = ΦT

i BijΦj and L̂m = ΦT
mLm. These operators are

the building blocks of the global ROM. Figure 1 illustrates the construction of the global ROM from
the component-level samples.

It is worth emphasizing that the ROM operators B̂m, B̂ij and L̂m need not be constructed from a
global scale system. The POD modes Φr can be identified from the component-level samples. The
discretized operators Bm, Bij and Lm can be constructed in the reference component domains, and
repeatedly used over the entire global domain. As long as the component-level samples for training
Φr are rich enough to represent general physics, the global ROM can robustly predict at larger scales
in an efficient manner.

3 Demonstration

We demonstrate the component model reduction for the incompressible Stokes flow equation, where
the component governing equation (1a) for qm ≡ (um, pm) is
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(a) Ω1: empty (b) Ω2: circle (c) Ω3: triangle (d) Ω4: square (e) Ω5: star

Figure 2: Reference domains used as components: (a) empty, (b) circle, (c) triangle, (d) square, and
(e) star.

−µ∇2ũm +∇p̃m = 0 in Ωm (5a)
∇ · ũm = 0 in Ωm, (5b)

where u and p denotes the velocity and pressure field, respectively and µ = 1.1 is the dynamic
viscosity. (5) describes the conservation of momentum with incompressibility condition.
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Figure 3: Component model reduction for the Stokes flow equation: (a) a sample data with a random
inflow condition; (b) a prediction made by the global ROM; and (c) the computation time and relative
error of the ROM solution compared to the full-order model (FOM). The computation time and the
relative error are measured over 100 different inflow conditions.

Five different reference domains C = {Ω1, . . . ,Ω5} are considered as components for building up
the global-scale system. All reference domains lie within a unit square Ωr ⊂ [0, 1]2, with or without
an obstacle within them, as shown in Figure 2. The type and number of elements of each component
is summarized in Table 1. The full order model (FOM) discretization (2) is implemented for (5)

Ωr (name) Ω1 (empty) Ω2 (circle) Ω3 (triangle) Ω4 (square) Ω5 (star)
Number of elements 64 168 393 372 415
Number of samples 1115 1076 1098 1114 1197

Table 1: Specification of component reference domains.

in the MFEM framework [23]. To develop the ROM, 1400 sample snapshots for basis training are
generated on 2-by-2-component domains. For each sample, the domain is constructed with four
randomly chosen subdomains from C. On each sample domain, a random inflow velocity is set with
a sinusoidal perturbation for the Dirichlet boundary condition,

udi = (g1 +∆g1 sin 2π(k1 · x+ θ1), g2 +∆g2 sin 2π(k2 · x+ θ2)), (6)

on the Dirichlet boundary ∂Ωdi, which is the upwind sides of Ω. The parameters in (6) are chosen
from uniform random distributions for each sample. At the surface of the object inside the domain,
a no-slip wall boundary condition is set, and the rest of the boundary is set as a no-stress outflow
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condition. Figure 3 (a) shows an example sample domain and its velocity magnitude. From these
samples, 36 POD modes are identified and the global ROM is constructed for larger-scale domains,
up to M = 1024-component system. Figure 3 (c) shows the computation time and the relative error
of the ROM at different M . At each size, the ROM prediction is made for 100 cases of random
inflow conditions and compared with the FOM. The resulting global ROM reduced the computation
time by a factor of 16, up to 1024-component systems. The accuracy of the prediction, however, is
not compromised. The relative error of the ROM is maintained at ≲ 2% over all scales. It is worth
emphasizing that the ROM exhibits a consistent performance over all cases of inflow conditions,
all of which are highly extrapolative. Figure 3 (b) shows a global ROM prediction for a random
32-by-32-component system, where the velocity magnitude is 10 times larger than those of the sample
data. Nonetheless, the accuracy of the ROM is robustly maintained.

4 Conclusion
In this work we address a common practical challenge in scaling up, where the data for the model
reduction is provided only at small component-level scales, and accurate prediction is required at a
much larger scale. We developed a component ROM where the ROM is combined with DG-DD. The
proposed method provides building blocks for robust and efficient prediction at an extrapolated scale.

The proposed method is demonstrated on the Stokes flow equation. The resulting ROM accelerates
the solving time by a factor of 16, for global domains up to 1000 times larger than the component
domains. The resulting ROM was capable of robust prediction without compromising the accuracy, as
demonstrated by the small relative error (≲ 2%) over all scales. In this study, the reference domains
are chosen to lie within a simple unit square for the demonstration. However, the proposed method is
not limited to certain geometries: any shape of reference domain can be chosen as long as its interface
is conforming to other reference domains.

It is well known that the linear subspace ROM cannot be naively applied to the nonlinear problems.
In case of polynomially nonlinear PDEs such as incompressible Navier–Stokes flow, the tensorial
approach can be applied [24]. In other cases, hyper-reduction approaches are also available [25–29].
In all cases, similar ROM variants can be formulated with the DG-DD, as all the model reduction
techniques similarly exploits the physics equation.
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