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Abstract

One major challenge that arises from quantum computing is to implement fast,
high-accuracy quantum state readout. For superconducting circuits, this problem
reduces to a time series classification problem on readout signals. We propose that
using path signature methods to extract features can enhance existing techniques
for quantum state discrimination. We demonstrate the superior performance of
our proposed approach over conventional methods in distinguishing three different
quantum states on real experimental data from a superconducting transmon qubit.

1 Introduction

Leveraging quantum mechanics to calculate computational tasks provides substantial advantages
over classical computing, particularly in solving complex problems such as computing quantum
chemistry properties [3], simulating material attributes [8], and deciphering widely used asymmetric
ciphers [27]. To implement these tasks, a fault-tolerant quantum computer with large enough quantum
resources is essential, and yet one of the difficulties in building such a machine is to implement a
fast, high-accuracy approach to convert quantum information back to classical information, usually
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referred to as readout. The readout of superconducting qubits typically employs the dispersive readout
technique [16, 29, 30]. A probing microwave signal is sent to a resonator that is weakly coupled to the
qubit, and the qubit state information is then carried by the returned signal. In practice, the returned
probing signal is captured as a time series and analyzed on a computer to discriminate the qubit state.
Due to the physical limits, the signal-to-noise ratio is typically low. It is therefore worthwhile to
explore whether other techniques such as machine learning could enhance state discrimination from
the given signal. In general, the qubit state discrimination task is to classify noisy time series.

The signature of a (multi-dimensional) path/time-series is a graded, infinite collection of iterated
integrals, where the signature of a path X up to degree N is the collection

SigN (X) :=

 ∫
· · ·

∫
0<t1<···<tk<1

dXi1

dt
(t1) ·

dXi2

dt
(t2) · · ·

dXik

dt
(tk)dt1 · · · dtk


1≤i1,...,ik≤d
k=0,1,2,...,N

. (1)

The signature describes the paths in a global, geometric, and interacting way. For example, the degree
1 signatures are the increments in different dimensions, and the degree 2 signatures describe the
area formed between the graph of a pair of features and the 45-degree line. See [19, 4, 9] for more
information about the signature method. In this work, we apply the signature method to the readout
time-series data to enhance state discrimination.

1.1 Related work: Machine learning for dispersive readout

Machine learning approaches have been adopted to implement state discrimination. Traditional
machine learning models such as Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), and Support Vector Machines (SVMs) have been benchmarked for discriminating
readout signal trajectories [21], and discovered that nonlinear algorithms exhibit higher assignment
accuracy. The Hidden Markov Model (HMM) has been employed to track the changes in qubit
states throughout the measurement duration [22]. Given that the measurement process occurs over
a considerable duration of time compared to the qubit lifetime, there’s a possibility for the state of
the qubit to change during measurement. Utilization of the HMM has shown superior starting-state
assignment fidelity when compared to SVMs and GMMs. Feed-forward neural networks (FFNN)
have been proposed for state discrimination and demonstrated their capability to reduce crosstalk
noise [17]. Variational autoencoders (VAE) has been employed to distill features from readout signal
[18], and have demonstrated an advantage for short and long time measurements.

1.2 Related work: Signature applications

The path signature method have found broad applications. Signature features from time-ordered
measurements of the whole brain, ventricles, and hippocampus were used to predict Alzheimer
disease [23]. The signature kernel and the tree structure between different processes were used for
malware detection [5]. Signature features of EEG traces were used for seizure forecasting [12].
Signatures calculated from financial data streams were used for training a generator that generates
data streams indistinguishable from the empirical distribution [2]. Limit order book data generates
path signatures for market activity classifications [11]. Online hand-written digit path of Chinese
characters can be machine recognized by its signature features [10]. Signature features of the sequence
of prices were used to learn the outcome of an investment strategy using the supervised learning
setting where historical performances are given [20]. Encrypted network traffic classification also
benefits from the path signature method [31]. Signature features were used for the classification
of bipolar and borderline personality disorder [25]. Signature features were used for modeling
volatility processes, which form a crucial part of stochastic differential equations for financial assets
[1, 7, 6]. A generalized signature method that comprehensively considers constructing features from
multivariate-time series using the signature was proposed [24].

2 Method

Modeling dispersive readout The most widely used readout technique for superconducting quan-
tum processors utilizes the state-dependent dispersive shift (change in resonance frequency depends
on the qubit state) of a resonator coupled to the qubit to discriminate the qubit state. A probing
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(a) Qubit state |0⟩
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(b) Qubit state |1⟩
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(c) Qubit state |2⟩

Figure 1: (a-c) Signal obtained by probing the resonator when the transmon qubit is in states |0⟩,
|1⟩, and |2⟩, respectively. The solid line represents the average result over 2000 samples, and the
translucent line denotes a single-shot example trace. Blue and red colors correspond to the I and Q
channels of the signal, respectively.

signal is send to the resonator; after interaction, the phase and amplitude of the microwave signal are
alternated depends on the resonator frequency, encoding the qubit state information. The objective
is to improving state assignment accuracy while reduce the readout probing duration, within the
constraints of the physical and experimental setup. We model the signal’s path [29, 30, 14] as

dXk
t = dF k

t + dϵt (2)

where Xk
t is a random variable that denotes the received signal sample at time t, and F k

t is the
resonator system response at time t without noise. The signal contains two channels, with k ∈ {I,Q}
representing the in-phase and quadrature-phase channel, respectively. Examples of Xk

t and F k
t in

this experiment are presented in Fig.1. The term dϵ(t) is a stochastic differential representing the
noise of the system, following a zero-mean distribution, and we model it as a Brownian motion.

The most widely used approach to discriminate the qubit state is using the Gaussian Mixture Model
(GMM) on the signal {F̃ I , F̃Q}, where F̃ k is the integral of Xk

t , given by

dF̃ k
t = Xk

t dt = F k
t dt+ ϵtdt (3)

When F k is carefully chosen by setting the probing microwave signal frequency and envelope, the
first term remains meaningful while the noise term

∫
dϵ(t) will approximate the expectation value 0.

Path signature as a universal feature set Signature features have a strong theoretical basis. For
example, we have from [13] that under mild assumptions, the full collection of signatures defined
in Eq.(1) uniquely determines the path X up to reparametrizations and translations. Note that in
evaluating a second-degree term of the signature, where one of the dimensions is the time argument
(specifically, the values of this dimension are {t0, t1, ..., tn}), this term can be written as:

S(X)k,τt =

∫
0<s<t

S(X)ksds =

∫
0<s<t

(Xk
s −Xk

0 )ds (4)

Where τ denotes the time argument dimension. Considering that in the absence of a signal, the
measured traces contain the value of zeros, the initial point of the measurement traces Xk

0 will
consistently be 0. The expression S(X)k,τt then reduces to F̃k(t). These lower order signatures
have well-known geometric meanings – degree 2 signature generates the Lévy area of the path X
projected to two dimensions. The Levy area of a two dimensional path {Xi(t), Xj(t) } is related to
its signature by

A =
1

2

(
S(X)i,j − S(X)j,i

)
, (5)
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Figure 2: (a-b) Comparison of assignment accuracy between the baselines and feature extraction
using path signatures. The parameter depth=k indicates retaining signatures up to the k-th degree.
The error bar represents one standard deviation across 10 different experiments with different random
seeds.

where S(X)i,j corresponds to the terms in Eq.(1) with k = 2, i1 = i, i2 = j. Therefore, using other
terms of the path signature would be a natural extension of the current features for discriminating
quantum states.

3 Experiment

3.1 Dataset

A trace is collected through a two-step measurement process. The qubit state is first determined using
the conventional GMM method and then prepared into |0⟩, |1⟩, and |2⟩ states by applying quantum
operations |0⟩ → |1⟩ and |1⟩ → |2⟩ with fidelity (how accurate the gate performs) of approximately
99.7%. Subsequently, a second measurement is conducted and the traces are recorded. Traces
from the initial measurement not yielding the |0⟩ state are discarded, as they imply a subsequent
unsuccessful qubit state preparation.

Each trace was acquired using two 1 Gsps (Gigasample per second) sampling rate analogue digital
converter devices, providing two (I and Q) distinct dimensions. The recorded signal has a carrier
frequency of 125 MHz; a short-term Fourier transformation was applied to segments of 256 samples
to demodulate the signal at this frequency.

A database of 5,000 traces for each state was created using the above-mentioned approach. In each
experiment, 2,000 traces per state were randomly selected from the database, resulting in 6,000 traces
per experiment. These traces then divided into the training set of 4,800 traces and the testing set of
1,200 traces, and the accuracy reported are testing set accuracies. Each hyperparameter configuration
was evaluated across 10 repeated experiments with different random seeds for selecting the data from
the database and splitting the training and testing dataset to ensure a robust statistical analysis.

3.2 Results and discussion

The metric utilized in this study is assignment accuracy, representing the percentage of the discrimi-
nated state that matches the intended prepared state. Each method is benchmarked with variations in
the cut-off point of the time-series provided to the classifier. See Fig.2.

GMM The GMM model is used as one of the baselines. Trace data are reduced to two-dimensional
points utilizing the method in Eq.(3). Subsequently, a GMM with three components and diagonal
covariance is trained to evaluate the accuracy. This is the standard approach to implement state
discrimination.
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Random forest (RF) The RF model serves as an alternative baseline. The two-dimensional time
series is flattened into a vector for RF training. The optimal number of trees is determined through a
search among 10, 30, 50, 70, and 100 to yield the best outcome. It is observed that RF consistently
outperforms the GMM method in assignment accuracy.

Signature-based RF The signature is computed using both base point and time augmentation. The
truncation depth of the signature is adjusted, followed by classification via an RF, maintaining a setup
consistent with the baseline. The computed signatures are rescaled so that the last path signature
term is roughly O(1). We observed that the path signature method, integrating with RF, consistently
outperforms both GMM and simple RF. Increasing the signature depth further improves accuracy,
though a depth beyond 3 does not yield statistically significant enhancement.

The accuracy achieved in our experiment is lower that of the results reported in prior studies
[15, 30, 28]. This difference can be attributed primarily to our experiment setup which did not
incorporate any quantum amplifiers. In addition, the qubit device used in our work was not specifically
optimized for implementing readout.

4 Conclusion

Path signature is a powerful method for feature extraction derived from the theory of rough paths in
stochastic analysis. This study demonstrates an application of path signature in quantum computing
and employs the path signature to distinguish quantum states in superconducting qubits. The
experiment demonstrates that the integration of path signature and RF outperforms conventional
models in state discrimination tasks. Building on this work, further investigation could compare and
integrate this method with other machine learning classifiers and explore the underlying reasons for
the improved accuracy of the path signature approach.
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