
Optimizing Likelihood-free Inference using
Self-supervised Neural Symmetry Embeddings

Deep Chatterjee†
Massachusetts Institute of Technology

Cambridge, MA, USA

Philip C. Harris∗
Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

Massachusetts Institute of Technology
Cambridge, MA, USA

Maanas Goel
University of Pennsylvania

Philadelphia, PA, USA

Malina Desai
Massachusetts Institute of Technology

Cambridge, MA, USA

Michael W. Coughlin
University of Minnesota
Minneapolis, MN, USA

Erik Katsavounidis
Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

Likelihood-free inference is quickly emerging as a powerful tool to perform
fast/effective parameter estimation. We demonstrate a technique of optimizing
likelihood-free inference to make it even faster by marginalizing symmetries in
a physical problem. In this approach, physical symmetries, for example, time-
translation are learned using joint-embedding via self-supervised learning with
symmetry data augmentations. Subsequently, parameter inference is performed
using a normalizing flow where the embedding network is used to summarize
the data before conditioning the parameters. We present this approach on two
simple physical problems and we show faster convergence in a smaller number
of parameters compared to a normalizing flow that does not use a pre-trained
symmetry-informed representation.

1 Introduction

Parameter estimation is fundamental to experimental science. Traditional approaches involve stochas-
tic sampling, like markov-chain monte carlo (MCMC) or nested sampling, to obtain posterior
probability densities and confidence intervals on parameters. However, with the increase in number
and flavors of analyses, complexity of experiments, and the demand for near real-time inference,
stochastic sampling is turning out to be a challenge both in terms of time and required compute.
Likelihood-free, or simulation-based inference (LFI/SBI) has emerged as a potential breakthrough in
this regard (see Refs. [1, 2] for a review). Simulations to generate data, d, corresponding to physical
parameters, Θ, exists for many experiments. The idea of LFI is to learn p(Θ,d), p(Θ|d), or p(d|Θ)

†
deep1018@mit.edu; ∗pcharris@mit.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

0 2 4 6 8 10
Time

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

Di
sp

la
ce

m
en

t

Data
Signal

-10 -7 -5 -2 0 2 5 7 10
Time

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

Di
sp

la
ce

m
en

t

Data
Signal

Figure 1: Left: Example signal and data of a damped harmonic oscillator (SHO) with representative
values of Θ = {ω0, β}. The data is shown by the solid dots to represent sampling a time-series.
Right: An example of a sine-gaussian (SG) pulse with parameters, Θ = {f0, τ}. In either case,
different times of arrival, shown in faded curves, do not affect the inference of parameters.

from the pairs {Θi,di} as desired (see Sec. 2.1 of [3] for a nice description). In this work, we focus
on the construction of the posterior, p(Θ|d).
A critical aspect of the application of LFI arises from the difficulty in performing high dimensional
fits. Often times, posterior extraction requires a large amount of training samples, and large neural
network to ensure a fully accurate description of the model. As an example, current state of the art
networks for gravitational-wave (GW) parameter estimation require over 100 million parameters
to ensure an accurate description of the GW parameters [4]. One potential way to mitigate the size
of LFI models is to project out parameters that are known to be invariant to the desired intrinsic
parameters. For example, in the case of pulse-like time-series, the time of arrival may not be as
important as the physical system/process that produces the pulse. However, a conventional application
of LFI, unaware of this symmetry, considers data corresponding to time translated signals as unique
and requires that the arrival time be determined, or marginalized over, with the other desired physical
parameters. This necessitates a larger model and expensive compute to train a model that learns
to marginalize over time (or some other variables, λλλ), despite the fact that the desired parameter
inference is time-(or λλλ-) invariant. If the interest is limited to the physical, intrinsic parameters, this
is superfluous.

In this paper, we utilize self-supervision to project away the invariant parameters so as to reduce
the LFI to the extraction of only the intrinsic parameters. Here, we marginalize over this symmetry
by learning a similarity embedding through self-supervised learning (SSL). In the instance of time
translation invariance we rely on SSL to build a reduced representation where instances of data
with different arrival times are represented as similar values in an embedded space. We train a
representation network by minimizing the VICReg similarity loss [5]. A similar technique was used
recently to summarize cosmological data [6]. SSL has also been applied to learn symmetries in partial
different equations (PDEs) [7]. There are other techniques, not involving SSL to summarize data for
LFI on timeseries e.g. YuleNet [8]. Once we have constructed the SSL space, the subsequent LFI is
conditioned on the embedded space. We demonstrate this scheme considering two simple physical
systems – a damped harmonic oscillator (subsequently called SHO) that is started at different times,
and a sine-gaussian pulse (subsequently called SG) that has an arbitrary time of arrival in a window.
We show that we are able to obtain posteriors which are accurate and require a significantly smaller
number of training parameters compared to the case when the data is not represented, or similarity
pre-training is not performed. We point out that while signals with identical physical parameters,
translated in time is an exact symmetry, the corresponding data is not due to the presence of noise.
This motivates “similar” representation as opposed to “same.”

2 Marginalizing Time-translation in Physical problems

Consider a SHO described by physical parameters, Θ = {ω0, β}, the natural frequency and damping
coefficient respectively. We would like to infer on the parameters given a time-series, d, with SHO

2

(0 0.2, 0.45)
(0 0.5, 0.35)
(0 0.8, 0.25)
(0 1.1, 0.15)

3

0

3

6

9

2

6 4 2 0

1

0

3

6

9
12

3

3 0 3 6 9

2

0 3 6 9 12

3

(f0 0.1, 1.2)
(f0 0.3, 1.5)
(f0 0.5, 1.9)
(f0 0.7, 2.1)

2.5
0.0
2.5
5.0

2

6 4 2 0 2

1

7.5
5.0
2.5
0.0
2.5

3

2.5 0.0 2.5 5.0

2

7.5 5.0 2.5 0.0 2.5

3

Figure 2: SHO (left) and SG (right) data representations. The signals have intrinsic parameters
denoted by the delta function, but have augmented time shifts sampled uniformly from a window.
We observe that the SSL construction leads to separation based on intrinsic parameters where the
variations in the time of arrival is reduced to a substantially smaller region that the intrinsic parameters,
approaching the time-project space.

amplitudes as shown in the left panel of Fig. 1; white noise is additionally added. If the oscillator is
started at a different time, represented by the shifted solid lines in the figure, the inference on ω0 and
β remains the same. The same applies in the context of inferring properties of a SG pulse, represented
in the right panel of Fig. 1, where the parameters of interest are the central frequency, f0, and width,
τ . In the standard scheme of LFI, the parameters are sampled from prior distribution, Θ ∼ p(Θ),
following which the data, d, is generated, and the model is provided {Θi,di} pairs. This, however,
leaves learning nuisance parameters, like time shifts, and marginalizing over them, up to the model,
which could be expensive in terms of trainable parameters and compute.

2.1 Representing time-shifted data

We project the time shifted data instances into a 3D embedded space via a neural network, Γ ≡ h ◦ f ,
such that the data at different times, with the same parameters Θ, is mapped to similar regions in this
embedded space. We follow the scheme of self-supervised learning as follows:

• We consider two batches – in the first case the data, d, has a fixed reference time of arrival,
in the second, the data, d′, is augmented by shifting start time by a suitable time-shift prior.

• In our implementation, f is a 1D convolutional resnet followed by a fully connected
contraction layer to represent each batch in 3 dimensions i.e. γ ∈ R3. The representation is
then passed through a fully-connected expander network, h, to output x ∈ R12 i.e.,

γ = f(d); γ′ = f(d′); x = h(γ); x′ = h(γ′). (1)

Ideally, the dimensionality of the representation is determined based on a systematic hyper-
parameter tuning. However, in this case, our choices dimensions was based on performance
from trials on a handful of cases.

• We use the VICReg loss between the expanded outputs to minimize regularized variance and
covariance of the embedded batches individually, and the invariance between the batches
using mean-squared error. The net loss is a weighted sum of the three terms,

LVICReg(x, x
′) = λ1 MSE(x, x′) + λ2 [Var(x+ ϵ) + Var(x′ + ϵ)] +

λ3 [Cov(x) + Cov(x′)] , (2)

where λ1,2,3 are the relative weighting of the three terms that can be adjusted during training.
For this work we found that increasing the reconstruction and variance weights compared to
the covariance term in the initial epochs followed by setting the weights equal helped with
the convergence.

3

0.70+0.01
0.01

Nested Sampling
Flow with Similarity
representation (77K params)
Flow with no
representation (414K params)

0.6
75

0.7
00

0.7
25

f0

2

3

4

2 3 4

3.11+0.21
0.21

1.57+0.06
0.05

Nested Sampling
Flow with Similarity
representation (99K params)
Flow with no
representation (355K params)

1.2 1.6 2.0

0

0.2

0.4

0.0 0.2 0.4

0.21+0.03
0.03

0 250 500 750 1000 1250 1500 1750 2000
Steps

2

0

2

4

6

- L
og

. P
ro

b.

Flow with Rep. (77K params.)
Flow un-trained Rep. (87K params.)
Baseline Flow (130K params.)
Baseline Flow (268K params.)
Baseline Flow (414K params.)

0 250 500 750 1000 1250 1500 1750 2000
Steps

3

2

1

0

1

2

3

4

5

- L
og

. P
ro

b.

Flow with Rep. (99K params.)
Flow un-trained Rep. (111K params.)
Baseline Flow (130K params.)
Baseline Flow (189K params.)
Baseline Flow (355K params.)

Figure 3: Top: We show consistency between posteriors from a NF with a pre-trained Γ, a baseline
NF without any data summary, and results from nested sampling. The ± uncertainties in the individual
panels are quoted based on the nested sampling result. Bottom: Loss curves (black dashed lines for
validation) for the different cases. The NF with a pre-trained Γ converges in a smaller number of
trainable parameters, and sometimes more rapidly, compared to other cases.

• Once trained, data from same physical parameters are represented as clusters embedded
in this space irrespective of the time of arrival. This is shown in Fig. 2, where different
physical parameters are represented as roughly separated clusters irrespective of their time
of arrival. We freeze part of the network f at this point.a

3 LFI with Normalizing Flows

Next, we perform the conventional LFI by training a normalizing flow (NF) [9]. We use a base 2D
standard normal distribution with affine autoregressive transforms i.e. a masked autoregressive flow
(MAF) [10].b We condition the normalizing flow with the representation network, f . Hence, the pairs
provided during training are {Θi, f(di)} ≡ {Θi, γγγi}. The network is trained by maximizing the
log-likelihood. In Fig. 3 we show an example of posterior samples from testing data for both SHO
and SG models. We compare the same with posteriors samples obtained by training a baseline NF
which does not have any such representation network, and also with results from nested sampling.c
We compare the widths of the posterior obtained using our trained model and stochastic sampling and

aHere, we freeze the conv. layers of f , and left the fully connected layers free to train in the next step.
bWe use the implementation from nflows library with minor changes.
cWe use the bilby inference library with dynesty sampler.

4

0.0 0.2 0.4 0.6 0.8 1.0
C.I.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 e

ve
nt

s i
n

C.
I.

0 (0.032)
 (0.016)

0.0 0.2 0.4 0.6 0.8 1.0
C.I.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 e

ve
nt

s i
n

C.
I.

f0 (0.452)
 (0.956)

Figure 4: Left: Results from 1000 tests data instances for which posteriors where drawn. It plots
fraction of times the true parameters of the SHO model lie in credible interval. In each case 3000
posterior samples are drawn from the trained model. The gray bands denote the 1-, 2-, 3-σ confidence
intervals in decreasing order of opacity. Right: Same plot as the left for the SG model and testing set.

show that they are consistent. We also compute the Cramer-Rao bound on the parameter uncertainty
by expanding the likelihood to quadratic order in the argument of the exponential. We show that
the results obtained from the trained flow are consistent with CRB for the SG and SHO models (see
Appendix A.1). In Fig. 4 we show the result of 1000 test data instances for which posteriors were
drawn from the trained model. The plot highlights the consistency between the confidence intervals
and the fraction of times the true parameters lie inside the confidence intervals. The diagonal trend
in the figure, along with the consistency of individual posteriors mentioned in Appendix A.1 show
consistency across the entire testing dataset. The gray bands on both panels denote the 1-, 2-, 3-σ
confidence intervals.

Comparing number of trainable parameters – the baseline NF model, without any data summary, has
O(106) while the same for the NF with pre-trained Γ is significantly lower i.e. O(105). For a batch
size of 103, a forward pass involves ∼ 1.1× 108 multiply–accumulate operations (MACs) for the NF
with the representation, while ∼ 4.1× 108 MACs for the baseline NF. This may translate to longer
training times, for example, timing 100 epochs a NVIDIA GeForce GTX 1080 Ti GPU with SGD
optimizer takes ∼ 20 minutes for the NF with representation while ∼ 80 minutes for the baseline
NF. We found 100 epochs of the similarity pre-training, which takes ∼ 10 minutes, was sufficient
to reduce the individual loss terms in Eq. (2). We found that freezing all trainable parameters of
representation network parameters at this stage led to slightly larger posterior widths compared
to nested sampling. However, letting the network further train with the flow, at least leaving the
fully connected layers of the representation network unfrozen, led to similar performance as nested
sampling. Therefore, the prescription presented here generally implies smaller networks and more
efficient memory and compute requirements.

4 Application in Physics and Astronomy

While in this work, we have considered projecting out the time of arrival as a specific example of
a symmetry that does not impact the measurement of other parameters, it should be noted that the
technique presented here could be used in general to marginalize over parameters that are not of
interest. Many problems physics and astronomy exhibit a set of intrinsic vs. extrinsic parameters. For
example, in GW data analysis, the intrinsic parameters include the masses and spins of merging binary
black holes, while extrinsic parameters involve distance, inclination, sky-location etc. Likewise, a
kilonova lightcurve is intrinsically characterized by the ejecta mass and lanthanide fraction etc., and
extrinsically by redshift, extinction, time of arrival etc. If the interest is only limited to a subset of
parameters, or to only intrinsic properties, a representation using self-supervised learning can be used
for efficient LFI.

This work is supported by NSF HDR Institute Grant PHYS-2117997, “Accelerated AI Algorithms
for Data-Driven Discovery.”

5

A Appendix

A.1 Analytic approximation of the posterior

The signal models are,

yi ≡ y(ti) =

exp (−βω0ti) cos
(
ω0ti

√
1− β2

)
for SHO

exp
(
− t2i

τ2

)
sin(2πf0ti), for SG.

(3)

Assuming white noise drawn from N (0, σ), (with σ known) the likelihood is,

L ∝ exp

[
−1

2

∑
i

(
yi − ŷi

σ

)2
]
, (4)

where ŷ is the truth i.e. signal corresponding to true parameters {ω̂0, β̂} ({f̂0, τ̂}) for SHO (SG).
Expanding the argument of the exponential to quadratic order in {ω0, β} (or {f0, τ}) around the true
value, the likelihood is approximated by gaussian with widths,

∆ω0 ≈ σ√∑N
i t2i e

−2β̂ω̂0ti

[√
1− β̂2 sin

(
ω̂0ti

√
1− β̂2

)
+ β̂ cos

(
ω̂0ti

√
1− β̂2

)]2 , (5a)

∆β ≈ σ√√√√∑N
i ω̂2

0t
2
i e

−2β̂ω̂0ti

[
β̂ sin

(
ω̂0ti

√
1−β̂2

)
√

1−β̂2
− cos

(
ω̂0ti

√
1− β̂2

)]2
, (5b)

∆τ ≈ στ̂3√∑N
i 4 t4i exp(−2t2i /τ̂

2) sin2(2πf̂0ti)
, (5c)

∆f ≈ σ√∑N
i 4π2 t2i exp(−2t2i /τ̂

2) cos2(2πf̂0ti)
. (5d)

By assuming flat priors, the posterior is proportional to the likelihood, having widths approximately
given by Eqs. (5). For the examples in Fig. 3, the value of σ = 0.4 in either case. The true SG
parameters are {f̂0 = 0.7, τ̂ = 0.3}; for SHO they are {ω̂0 = 1.5, β̂ = 0.2}. From Eqs. (5), we
get ∆ f0 ≈ 0.006 ∆τ ≈ 0.2 for SG,and ∆ω0 ≈ 0.04 ∆β ≈ 0.03 for SHO models, satisfying
Cramer-Rao bound for the one-sigma widths shown in Fig. 3.

A.2 Code Availability

The codes used in the analysis, including trained weights to reproduce figures in the draft, are
provided publicly and tagged. Online rendering of notebooks are available here: https://github.
com/ML4GW/summer-projects-2023/tree/neurips-2023/symmetry-informed-flows.

References
[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences, 117(48):30055–30062, may 2020.

[2] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference, 2021.

[3] Justin Alsing, Tom Charnock, Stephen Feeney, and Benjamin Wandelt. Fast likelihood-free
cosmology with neural density estimators and active learning. Monthly Notices of the Royal
Astronomical Society, jul 2019.

[4] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno,
and Bernhard Schölkopf. Real-time gravitational wave science with neural posterior estimation.
Physical Review Letters, 127(24), dec 2021.

6

https://github.com/ML4GW/summer-projects-2023/releases/tag/neurips-2023
https://github.com/ML4GW/summer-projects-2023/tree/neurips-2023/symmetry-informed-flows
https://github.com/ML4GW/summer-projects-2023/tree/neurips-2023/symmetry-informed-flows

[5] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning, 2022.

[6] Aizhan Akhmetzhanova, Siddharth Mishra-Sharma, and Cora Dvorkin. Data compression and
inference in cosmology with self-supervised machine learning, 2023.

[7] Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and
Bobak T. Kiani. Self-supervised learning with lie symmetries for partial differential equations,
2023.

[8] Pedro L. C. Rodrigues and Alexandre Gramfort. Learning summary features of time series for
likelihood free inference, 2020.

[9] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows,
2016.

[10] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation, 2018.

7

	Introduction
	Marginalizing Time-translation in Physical problems
	Representing time-shifted data

	LFI with Normalizing Flows
	Application in Physics and Astronomy
	Appendix
	Analytic approximation of the posterior
	Code Availability

