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Abstract

We pursue the use of Transformers to extend state-of-the-art results in theoretical
particle physics. Specifically, we use Transformers to predict the integer coefficients
of large mathematical expressions that represent scattering amplitudes in planar
N = 4 Yang-Mills theory, which is a quantum field theory closely related to the
theory that describes Higgs boson production at the Large Hadron Collider. We first
formulate the physics problem in a language-based representation that is amenable
to Transformer architectures and standard training objectives. Then we show that
the model can achieve high accuracy (> 98%) on two tasks.

1 Introduction

Particle physics at the energy frontier is entering an exciting new era of high-precision experiments,
ushered in by the high-luminosity upgrade of the Large Hadron Collider (LHC). Exploiting the full
physics potential of this data will require substantial improvements in the precision of the theoretical
predictions of the Standard Model (SM).

A key ingredient for these predictions are quantities called scattering amplitudes. The conventional
way to compute scattering amplitudes is based on Feynman diagrams, which graphically organize a
series of terms in a perturbative expansion. Higher-order terms in this expansion require Feynman
diagrams with loops of virtual particles, whose unobserved momenta are latent variables that must
be integrated over. Unfortunately, the number of Feynman diagrams grows factorially with the loop
order; thus, this paradigm for organizing the calculation quickly becomes intractable. Currently, no
LHC collider processes that involve quantum chromodynamics (QCD) are known at four-loop order,
and only very few are known at three-loop order [2, 3, 13, 16, 15, 14, 26, 17, 18].

An alternate paradigm for the calculation, known as the amplitude bootstrap [10, 6, 5], has seen
substantial successes in the simplest theoretical cousin of QCD, called planar N = 4 super-Yang-
Mills theory (SYM) [4]. As a theoretical laboratory or model system for QCD, SYM allows us to see
much further into the perturbative expansion than QCD. For example, a class of SYM amplitudes was
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recently computed to eight loops [11, 12] using the amplitude bootstrap approach. These amplitudes
(referred to as three-gluon form factors F3gFF) are the SYM analog of the LHC Higgs production
process gg → Hg, which is known only to two loops [19].

The amplitude bootstrap leverages the rich, yet highly constrained, analytical structure of amplitudes
that arises from the particular recurrent features of the Feynman integrals involved. The form of the
answer is known and the finite-dimensional solution space can be constrained through a large system
of linear relationships, so that a unique answer remains. Abstracted from the physics context, the
problem has the flavor of an integer programming problem with a solution that is hard to find, but
easy to check analytically.

In this paper, we investigate two approaches that use Transformers to help solve this problem. First,
we train models to predict elements of the solution at a given loop order from elements of the same
loop that have already been calculated. Using known linear relations, all model predictions can be
readily verified. Since there is only one valid solution at each loop order, this problem is similar to
low-rank matrix completion [22], where Transformers have been used in other works [25]. Second,
the mathematical structure of the problem suggests that the solution at L loops may be a function
of the integer coefficients from the solution at L− 1 loops. We train Transformers to discover this
implicit functional relation in order to facilitate the computation of solutions using the bootstrap
method, and, potentially, to shed new light on the underlying structure of SYM.

2 Related work

Our work is most akin to [9], which uses Transformers to simplify polylogarithms—complicated math-
ematical expressions arising from high-loop order amplitude calculations. However, this approach
uses Transformers to translate a given polylogarithmic expression into a shorter but mathematically
equal form, and does not attempt our more challenging task of solving the “bootstrap”, i.e. predicting
which polylogarithms give the result of a particular scattering process.

Other recent works that leverage deep learning to tackle analytical calculations in theoretical physics
include, among others, [1] which uses a sequence-to-sequence model to symbolically compute the
squared amplitude of a particle interaction, and [21] which invokes deep reinforcement learning to
explore the landscape of string vacua.

Our methodology is also closely related to those using Transformers for symbolic mathematical data.
[24] teaches Transformers to perform mathematical tasks such as solving differential equations. [8]
extends this approach to recurrent sequences; such sequences connect terms in scattering amplitudes
across loop orders. [7] uses a comparable approach to solve linear algebra tasks such as eigenvector
decomposition and matrix inversion, which share many structural similarities with the existing
amplitude bootstrap method.

3 Representing scattering amplitudes as language

Many amplitudes in SYM – including the aforementioned three-gluon form factor – can be expressed
in terms of generalized polylogarithms of weight w. At L-loop order, the weight, i.e. the number of
integrations, is 2L. The analysis of such a function F (L) typically involves another mathematical
object known as the symbol, which encodes information about its derivatives [20],

S[F (L)] =
∑

li1 ,...,li2L∈Ln

F li1 ,...li2L li1 ⊗ · · · ⊗ li2L . (1)

where Ln = {l1, . . . , ln} is the symbol alphabet containing n letters, which are in turn functions
of the particles’ momenta, and F li1 ,...li2L is an 2L-fold tensor of integers, many of which are zero.
Thus, a candidate solution for the symbol at L-loop order can be represented by n2L integers, forming
a 2L-dimensional sparse tensor, with each sequence of 2L letters a key or index into this tensor.

Symbols and their elements for the three-gluon form factor. The three-gluon form factor F3gFF

has the simplest alphabet of amplitudes known to high loop orders, which makes it the prototype
amplitude for the first application of machine learning methods. It has only six letters (i.e. n = 6):

L3gFF = {a, b, c, d, e, f} , (2)
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which are Lorentz-invariant functions of the gluons’ four momenta, and exhibits a dihedral symmetry:

cycle: {a, b, c, d, e, f} → {b, c, a, e, f, d} , and flip: {a, b, c, d, e, f} → {b, a, c, e, d, f} (3)

To give a concrete example, the symbol of F (1)
3gFF at 1 loop order contains only 6 non-vanishing terms,

S[F (1)
3gFF] = (−2)

[
b⊗ d+ c⊗ e+ a⊗ f + b⊗ f + c⊗ d+ a⊗ e

]
. (4)

Here, the word bd (shorthanded for b⊗d), a key into the tensor F l1,l2 , maps onto the value −2, while
the word ab maps onto 0. In the general case, S[F (L)

3gFF] is a sum of 62L elements, pairs of keys, i.e.
sequences of 2L letters, and integer coefficients. Most of the coefficients are zero (Table 1), and most
zeroes (the ‘trivial zeroes’) are accounted for by two rules:

• adjacency rule: any key including one of the subsequence ad, da, de (or their dihedral
images) has zero coefficient

• prefix/suffix rule: any key beginning with d, e or f or ending with a, b or c has zero
coefficient

Loop 1 2 3 4 5 6 7 8

Total (62L) 36 1, 296 46, 656 1.7 · 106 6.1 · 107 2.2 · 109 7.8 · 1010 2.8 · 1012
W/O trivial zeros 6 102 1, 830 32, 838 589, 254 1.1 · 107 1.9 · 108 3.4 · 109
Total nonzero 6 12 636 11, 208 263, 880 4.9 · 106 9.3 · 107 1.7 · 109

Table 1: Elements in symbol for loops 1 to 8.

4 Completing symbols by predicting coefficients from their keys

In this first set of experiments, we train sequence-to-sequence Transformers [27] to predict coefficients
from their keys at a given loop order (L = 5 and 6). Models are trained on a fraction of the symbol
and tasked to predict the rest. All tasks are framed as translation problems: input and output are
encoded as sequences, and the model is trained to minimize the cross-entropy with the ground-truth
solution. At the end of each epoch (300,000 training examples), the model is evaluated on a held-out
test set.

For L loops, keys are encoded as sequences of 2L letters, e.g., ‘a, a, b, d, d, c, e, e’.
Coefficients are encoded as sequences of digits in base 1000, e.g., 12334 as ‘+, 123, 344’. Models
have between 1 and 4 layers, in the encoder and decoder, 512 dimensions and 8 attention heads. The
optimizer is Adam, with a learning rate of 10−4. All models are trained on a single NVIDIA V100
GPU, with 32 GB of memory.

The purpose of these experiments is to demonstrate the capability of the Transformer to “complete” a
symbol: filling in the remaining elements once a part of the symbol has been constructed.

In a first series of experiments, we train 1-layer Transformers to predict whether the coefficient of
an element at loop 5 and 6 is zero. Models are trained from balanced sets, with 50% non-zero and
50% zero elements (both trivial and non trivial), and tested on 10,000 elements (50% zero) not in the
training set. At 5 loops, after being trained on 300,000 elements (57% of the symbol, one epoch), the
model correctly predicts 99.96% elements in the test set (all test cases but 4). At 6 loops, the model
predicts 99.91% of the test set after 300,000 elements (3% of the symbol), and 99.97% after 600,000
(6% of the symbol).

In a second set of experiments, we train 2-layer Transformers to predict non-zero coefficients from
their keys. Coefficients are encoded as sequences of digits in base 1000. All models are tested
on 100,000 elements not in the training set. At 5 loops, the model is trained on 163,880 elements
(62% of the symbol). After one epoch, it correctly predicts 47% of the coefficients from the test
set. Accuracy is 96% after 6 epochs, 99% after 15 and 99.9% after 58. Surprisingly, the absolute
values of coefficients prove easier to learn than their sign (a separate token). After one epoch, 92% of
absolute values are correctly predicted, but the signs are only predicted at about chance level (51%).
After 3 epochs, 99% of absolute values are predicted correctly, but only 75% of signs.

3



Figure 1: Learning curves, 6 loops. 4
model initializations.

Figure 2: The leading three PCA compo-
nents of token embeddings (77.7% of vari-
ance explained) for a 4-layer Transformer
trained on 6-loop data for 100 epochs exhibit
dihedral symmetry.

At 6 loops, the model is trained on 1,000,000 elements
(20% of the symbol), and tested on 100,000 elements not
in the training set. After 188 epochs, the best model (of
four) correctly predicts 98.9% of the coefficients in the
test set. The learning curves in Figure 2 reveal two quali-
tative phases. During the first 20 epochs, the model learns
the absolute values of coefficients. Then, accuracy satu-
rates around 50%, while the model predicts the absolute
values of coefficients with more than 95% accuracy, and
their sign at chance level. From epoch 40 to 60 the model
learns to predict the sign of coefficients. 95% of the coeffi-
cients in the test set are correctly predicted after 64 epochs,
and 98% after 120. These results indicate that Transform-
ers trained on a small fraction of the symbol can predict
coefficients from their keys with very high accuracy.

We further note that, when trained to predict only the mag-
nitude of the coefficient at 6 loops, the best model is able to
do so at 97.7% accuracy after 50 epochs. However, when
models are trained to predict only the sign of the nonzero
coefficient, they exhibit random guessing behavior after
100 epochs. This suggests that learning the magnitude of
the coefficient may be a prerequisite for learning the sign.

Finally, we extract the learned embeddings of the in-
put tokens from the embedding layer of the Transformer
and plot their leading three PCA components. Dihedral
symmetry is clearly manifest in the embeddings – the “oc-
tahedron” structure that emerges obeys both cyclic and flip symmetries. In particular, when we
restrict ourselves to the leading three PCA components, the angle between embeddings of “forbidden”
letter pairs is almost back-to-back, 175◦ ± 2◦, and the angles of all triangular faces are 60◦ ± 5◦.

This property is not guaranteed – while it appears during training on 6-loop data, no comparable
structure emerges when training the same model on 4-loop data, despite the fact that it quickly reaches
>99% accuracy. This suggests that this property is likely a function of both model size and task
complexity.

5 Predicting the next loop – the strike-two method

We now consider a different problem: direct computation of the L-loop symbol from the coefficients
at L − 1 loops. In practice, for any element EL at L-loops, we want to discover a list of parent
elements at L− 1 loops, L(EL), and a function f , such that the coefficient of EL is f(L(EL)). The
keys of elements at L loops are sequences of 2L letters. We define their strike-two parents as the
L(2L− 1) elements from L− 1 loops created by striking out two letters from the key (in order). For
instance, the six strike-two parents of aacf are �a�acf=cf, �aa�cf=af, �aac�f=ac, a�a�cf=af, a�ac�f=ac
and aa�c�f=aa.
In these experiments, 4-layer Transformers are trained to predict non-zero coefficients at 6 loops
from the coefficients of their 5-loop parents. Model inputs are sequences of 66 integers (encoded
in base 1000), outputs are single coefficients, as before. From the symbol, we can create 4.9 million
examples (5-loop parents and 6-loop coefficients), but this dataset includes a lot of duplicates. In
fact, each example is duplicated 6.26 times on average, mostly because of the dihedral symmetry, but
sometimes because unrelated elements have the same parents and coefficients. To avoid contamination
between the training and test set, we restrict the data set to 783,500 unique pairs, split into 773,500
training and 10,000 test examples.

After 500 epochs, the model predicts 98.1% of test examples. Learning is fast: 90% accuracy is
achieved after 20 epochs, and 95% after 80. In these experiments, the absolute values and signs of
coefficients are learned simultaneously. These results suggest that there exist simple formulas for
computing coefficients at 6 loops from their strike-two parents at 5 loops. We are not, so far, capable
of recovering these formulas, but additional experiments shed light on some of their features (Table 2,
see also Appendix A.2 for more detailed results).
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First, we investigate whether we can predict 6-loop coefficients from smaller sets of parents. To
study this, we only strike, in the 6-loop key, tokens that are no more than k = 1, 2, 3, 5 positions
away from each other: i.e. for k = 1, we only strike adjacent tokens, for k = 2, for the 4-loop
key bccbaeee, we allow bcc�ba�eee and bccb�a�eee but not bcc�bae�ee or bc�cbaee�e. This reduces
the number of parents to 2kL− k(k+1)

2 , down to 11 for k = 1. Our models predict 98.3%, 98.4%,
98.1% and 94.3% of test examples, when k = 5, 3, 2 and 1, respectively. Predicting from 21 parents
(k = 2), instead of 66, has no impact on model performance.

Accuracy Magnitude accuracy Sign accuracy

Strike-two, all parents 98.1 98.4 99.6
Strike-two, k = 5 98.3 98.6 99.7
Strike-two, k = 3 98.4 98.7 99.7
Strike-two, k = 2 98.1 98.3 99.5
Strike-two, k = 1 94.3 95.2 98.5

Randomly shuffled parents, all parents 95.2 99.1 96.3
Randomly shuffled parents, k = 2 93.5 98.1 95.0
Sorted parents, k = 5 93.9 95.4 97.9

Parent signs only 93.3 93.5 99.0
Parent magnitudes only 81.8 98.4 83.2

Table 2: Global, magnitude and sign accuracy. Best of four models, trained for about 500 epochs.

Second, we experiment with the order of parents. If parent coefficients (i.e. model inputs) are
randomly shuffled, the model still achieves 95.2% accuracy (93.5% with 21 parents, i.e. k = 2).
When parents are sorted in increasing order, it achieves 93.9% for k = 5. This suggests that the
formula for computing 6 loops from 5 loops is mostly unaffected by a permutation of its variables.

Finally, we note that 6-loop coefficients can still be predicted when only the sign of their parents
(−1, 0 or 1) is provided as input to the model. Such models achieve 93.3% accuracy, and correctly
predict the sign in 99% of test cases. Models trained on the absolute values of the parents predict
the magnitude of the coefficients with 98.4% accuracy, about the same level as models trained on
full parent coefficients. On the other hand, the sign of the coefficient proves harder to learn without
the sign of the parents. However, when these are shuffled or sorted in ascending order (i.e., all −1s,
all zeroes, then all +1s), the model is totally unable to learn- in other words, we can drastically
reduce information about the values of the strikeout parents or their ordering and still recover the full
coefficient, but we cannot do both simultaneously.

We note that this behavior may be an artifact of the way the strikeout experiment is constructed.
Because certain letter adjacency conditions imply zeroes, an ordered list of zero and nonzero parents
implicitly encodes some information about the original letter structure of the word. From previous
experiments, we know that this information can be used to reconstruct the coefficient. In future
strikeout experiments, we may wish to take this effect into account in order to better model the
relationships between words across loop orders.

6 Discussion / Future work

We have shown that Transformer models are able to predict the coefficients of scattering amplitudes
from both “words” and information from their “strike-two parents”. Precisely which structures are
being learned, however, remains a mystery. In future work, we intend to explore this further, including
by evaluating the many linear relations employed in the bootstrap method (in order to determine
whether the model learns an algorithm similar to the ones that are currently used by humans), and
by training on multiple loops simultaneously (in order to determine whether or not the learned
structures are loop-agnostic). While we are hopeful that our approach will be able to augment the
bootstrap procedure, one limitation is that, in order to train our models, we currently require a partial
ground-truth solution at the loop order we wish to predict.

We see ample opportunities for these models to aid in scientific inquiry in ways that span what Krenn,
et al. [23] characterized as computational microscopes and resources of inspiration, and hope that
they may, eventually, come to serve as agents of understanding.
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A Additional results

A.1 Predicting coefficients from keys

In this section, we present additional experiments about models trained to predict the coefficients at a
given loop order from their key.

Quads and octuples. As the loop number increases, the number of elements in the symbol becomes
very large. The 6-loop symbol has about 5 million elements, the 7-loop symbol has 93 million, and
the 8-loop symbol 1.7 billion. A compact representation of the symbol can be built by noticing that
there exist many linear relations between the coefficients of terms with different suffices. Up to
cyclic symmetries ((a,b,c) and (d,e,f)), there are 8 possible “quads”, which can be represented by
the following suffices: dddd, bbbd, bdbd, bbdd, dbdd, fbdd, dbbd and cddd. In quad representation,
we add 8 new letters to represent these 8 endings, and represent all elements in the loop by their
2L− 4 first letters, and their quad letter. There are 391,570 quads in the 6-loop symbol (vs 5 million
elements), and 7.3 million quads in the 7-loop symbol (vs 93 million). An even more compact
representation can be created by considering the last 8 letters in elements. There are 279 possible
octuples, a number that can be reduced to 93 by factoring out cyclic symmetry. There are 16,971
octuples in the 6-loop symbol, 312,463 for 7 loops and 5.6 million for 8 loops.

Learning from quad and octuple data is more challenging for our models, because these compact
representations eliminate most of the obvious symmetries in the three-gluon form factor. Yet, models
trained on quad data at 6 loops achieve 99% accuracy (98% after 123 epochs), and models for 7 loops
achieve 99.1% after 300 epochs, and 96.7% after 200 epochs, when trained from 4 million quads
only (55% of the symbol). For octuples, 8-loop symbols are predicted with 95.2% accuracy, after
865 epochs. The training curves still have a two-step shape, where the magnitude is learned first, then
the sign.

A.2 Predicting the next loop

Table 3 presents the overall, magnitude and sign accuracy of models trained for up to 700 epochs,
for different variations of the strike-two method. Two new sets of experiments are presented. In the
sorted unique experiments, all parents are sorted, and duplicates are removed. This proves harder
to train, with the best models achieving 83.4% accuracy, after 350 epochs. In the zero/non-zero
experiments, all non-zero parent coefficients are encoded as "1".
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Distance Best
Epoch

Train
Set Size

Accuracy Magnitude
Accuracy

Sign
Accuracy

Strike-two parents Full 455 772,500 98.1 98.4 99.6
5 524 769,060 98.3 98.6 99.7
3 601 753,352 98.4 98.7 99.7
2 681 703,869 98.1 98.3 99.5
1 646 591,510 94.3 95.2 98.5

Shuffled parents Full 407 4,906,466 95.2 99.1 96.3
5 376 4,906,466 94.7 98.8 95.8
3 408 4,906,436 95.1 99.0 96.1
2 433 4,906,249 93.5 98.1 95.0
1 442 4,882,510 91.1 92.2 96.5

Sorted parents Full 389 591,864 91.5 93.8 96.6
5 432 717,534 93.9 95.4 97.9
3 514 702,363 93.1 94.6 97.5
2 453 657,863 90.7 92.4 96.5
1 459 536,588 76.8 79.3 90.5

Sorted unique parents Full 329 476,932 79.0 84.0 92.1
5 355 538,325 83.4 87.4 93.6
3 349 487,813 79.7 84.1 91.7
2 287 436,012 73.6 78.5 89.4
1 314 355,147 57.2 61.9 80.9

Zero / non-zero Full 304 497,112 40.7 60.1 61.7
5 229 467,871 35.0 53.8 59.4
3 93 415,230 22.9 39.1 54.9
2 18 344,831 10.1 20.1 50.3
1 1 131,812 0.8 1.4 50.4

Parent signs only Full 404 748,088 93.3 93.5 99.0
5 330 739,479 92.4 92.5 99.0
3 294 711,450 88.2 88.4 98.2
2 331 653,368 73.3 73.6 94.8
1 22 468,339 5.8 6.5 64.6

Parent magnitudes only Full 395 751,675 81.8 98.4 83.2
5 445 747,187 81.2 98.4 82.4
3 452 726,554 79.7 98.3 80.9
2 611 672,561 77.8 97.9 79.4
1 509 527,843 64.1 93.6 67.7

Table 3: Global, magnitude and sign accuracy for strike-two method. We show the best of four models,
using 4-layer Transformers with 512 dimensions, 8 attention heads, and the Adam optimizer with a learning rate
of 10−4. All models where trained for up to 700 epochs, and we indicate the epoch at which the indicated best
accuracy was first achieved.
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