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1680 East-West Road, Honolulu HI, USA

linneamw@hawaii.edu

Peter Sadowski
Information and Computer Science Department

University of Hawai‘i at Mānoa
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Abstract

Bayesian Inference with Markov Chain Monte Carlo requires the ability to ef-
ficiently compute the likelihood function. In some scientific applications, the
likelihood can only be computed by a numerical PDE solver, which can be pro-
hibitively expensive. We demonstrate that some such problems can be made
tractable by amortizing the computation with a surrogate likelihood function imple-
mented by a neural network. This can have the added benefits of reducing noise in
the likelihood evaluations and providing fast gradient calculations. We demonstrate
these advantages in a model of heliospheric transport of galactic cosmic rays, where
our approach enables us to estimate the posterior of five latent parameters of the
Parker equation.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods are widely used to perform Bayesian inference in the
sciences, but they are computationally expensive. Hamiltonian Monte Carlo (HMC) is an approach to
accelerate MCMC sampling by using gradients of the likelihood function [Duane et al., 1987, Neal,
1993] that requires the likelihood function to be both tractable and differentiable. HMC provides
faster convergence to the target distribution than traditional MCMC methods such as Random-Walk
Metropolis-Hastings (RWMH), and consecutive samples have much lower autocorrelation than
samples drawn using RWMH. In this work, we address a scenario in which the likelihood function
is calculated by a numerical solver for a partial differential equation (PDE) and is incompatible
with HMC for three reasons: it is non-differentiable, it is too slow, and it suffers from numerical
instabilities. Our solution is to train a neural network (NN) surrogate likelihood that solves all three
of these problems.

Previous work has used machine learning models to accelerate HMC sampling [Foreman et al.,
2021a,b, Levy et al., 2018, Dhulipala et al., 2022, Li et al., 2019, Zhang et al., 2017]. Surrogate
models of the log-likelihood function using Gaussian Processes were proposed by Rasmussen [2003],
and Zhang et al. [2017] used shallow NNs as surrogate models in order to scale better to large
datasets. Our setup differs in that the original likelihood function can only be queried imperfectly
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by a numerical solver, and is thus never used for the HMC rejection step. The surrogate model is
assumed to provide a more reliable prediction of the likelihood function, and is thus used throughout
the HMC sampling.

We demonstrate this approach on the problem of modeling the heliospheric transport of galactic
cosmic rays (GCRs) [Rankin et al., 2022, Engelbrecht et al., 2022], a component of space weather
that will influence the scheduling of future manned space missions. The likelihood function computed
by the numerical solver fails a fraction of the time due to numerical instabilities, resulting in a noisy
estimate of the true likelihood. A NN surrogate model — with an inductive bias towards smoothness
— is trained on a large dataset of pre-computed PDE solutions. This provides significant improvement
in both accuracy and computational cost per likelihood evaluation during MCMC. This surrogate
likelihood is then combined with HMC to demonstrate state-of-the-art constraints on the global
heliospheric transport parameters.

α
IHMF
!SW
k0∥
a∥
b∥
a⊥
b⊥

32

Neural network surrogate fθ z = $%

z1

z 2
GCR flux predicted over 32 different rigidity 

steps distributed between 0.2-200 GV

Bayesian inference of model 
parameters k0∥, a∥, b∥, a⊥, b⊥

Posterior distribution

Rigidity

Fl
ux

Simulation
NN prediction
Observed

p & ' ∝) ' &  p(&)

Prior

Surrogate likelihood

p ' & = exp !"! #, %#
&

$% = fθ(z)

Prediction

HMC

 

my
 

Figure 1: The NN (top left) takes as input 8 latent parameters of the heliosphere, and predicts the
GCR flux at 1 astronomic unit (AU) for 32 rigidity steps. The NN is trained with targets from a
numerical solver that suffers from instabilities (top right), and a surrogate likelihood is computed by
comparing the NN outputs with observed fluxes (bottom left). This surrogate likelihood is used to
sample from the posterior (bottom right) using HMC.

2 Related work

MCMC uses a Markov chain to stochastically explore the typical set of a target distribution and sample
from an unknown multi-dimensional PDF [Neal, 1993]. The first MCMC algorithm, Metropolis-
Hastings, was introduced by Metropolis et al. [2004]. Hamiltonian dynamics were integrated with
MCMC to inform its steps towards high-likelihood samples and accelerate convergence to the typical
set [Betancourt, 2018]. Hoffman and Gelman [2011] improved the convergence of HMC further with
the introduction of the No-U-Turn-Sampling (NUTS) algorithm. The need for HMC to compute
gradient and likelihood function calculations at each step has since inspired various methods to
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accelerate MCMC sampling accelerate MCMC sampling [Cranmer et al., 2020, Magris and Iosifidis,
2023].

Rasmussen [2003] used Gaussian Processes to construct a surrogate likelihood function to reduce
computational costs. Zhang et al. [2017] carried this work forward by applying random nonlinear
bases along with efficient learning algorithms to construct a surrogate likelihood function to improve
on the computational cost of Gaussian Processes. Later work applied NNs to accelerate HMC,
including Li et al. [2019] who proposed an NN to approximate the gradients themselves, as opposed
to a surrogate likelihood function. Levy et al. [2018] used NNs to predict the HMC transition kernel,
and normalizing flow models were also used as a trainable kernel within the dynamic update of
the HMC by Foreman et al. [2021a]. Foreman et al. [2021b] proposed the use of NNs to replace
consecutive leapfrog steps. Finally, Dhulipala et al. [2022] applied Hamiltonian NNs to learn the
Hamiltonian dynamics of an HMC sampler and continue sampling without gradient information.

Thus, NNs have been used to accelerate many of the calculations required for HMC, including the
gradients, kernel updates, and leapfrog integrator calculations. However, to the best of our knowledge,
no work has explored the use of NNs as a surrogate likelihood function.

3 Constraining the global heliospheric transport of GCRs

We demonstrate our method by using it to constrain five parameters characterizing the transport
of GCRs within the heliosphere based on observations by detectors in orbit around Earth (1 AU).
GCRs constitute a major radiation hazard for deep-space human exploration, and understanding their
behavior will be critical for manned missions to Mars and beyond.

3.1 Problem set-up

The transport of GCRs within the heliosphere is described by the Parker equation [Parker, 1965]:

∂J

∂t
= −Vsw ·∇J +∇ · (K∇J) +

∇ ·Vsw

3
βR3 ∂

∂R

(
J

βR2

)
(1)

where J(r, R) is the measured GCR flux at a given position, r, and rigidity, R = (particle momentum)
/ (particle charge), while β is the particle speed divided by the speed of light. The various terms
represent the interactions of GCRs with the solar wind, a plasma ejected by the Sun moving with
velocity Vsw, and the heliospheric magnetic field (HMF). The HMF is characterized by the intensity
at 1 AU, IHMF , the solar dipole tilt angle, α, and by the direction (positive or negative polarity).
The diffusion tensor, K, describes the GCR scattering and drifting due to HMF small and large-scale
structures. It is characterized by a normalization constant, k0∥, and by the rigidity slopes of the
diffusion coefficient (DC) in the directions parallel (a∥, b∥) and perpendicular (a⊥, b⊥) to the HMF.

Observations come from the data listed in Table A.1, and our model parameters are those used to
describe the heliospheric magnetic field (HMF) conditions in Corti et al. [2019]. Our full methodology
is visualized in Figure 1.

3.2 Surrogate neural network

Evaluations of model-predicted fluxes are slow, and solving the Parker equation for slightly different
parameters is redundant as we expect the solution to vary smoothly. A surrogate NN has an inductive
bias towards smoothness, can be evaluated quickly at inference time, and is differentiable. This
conveniently solves all three obstacles to the use of HMC for Bayesian inference.

In order to train a NN surrogate, numerical solutions were computed for 6 million parameter values,
similar to what was done in Corti et al. [2019]. This large initial computational cost is parallelizable.
Solutions that demonstrated numerical instability were removed, resulting in 2,088,385 positive HMF
polarity and 1,987,658 negative HMF polarity samples. Two surrogate NNs are trained separately on
the negative and positive HMF polarity data. The resulting negative and positive polarity datasets
are split into training sets (90%) and test sets (10%), with the latter used for early stopping and
hyperparameter optimization.
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The surrogate NNs consist of fully connected networks with two hidden layers of 256 units each, 8
inputs, and 32 outputs. They predict the modulated flux at 32 rigidity steps, uniformly distributed in
logspace between 0.2 and 200 GV, from the 8 input parameters (tilt angle α, HMF intensity at Earth
IHMF , solar wind speed V⃗SW , and parameters related to the parallel and perpendicular diffusion
coefficients, DCs, k0∥, a∥, b∥, a⊥, and b⊥) for both positive and negative polarity periods. They were
trained tominimize the mean squared error (MSE) using the Adam optimizer. Further details can be
found in Table A.2.

Using the numerically stable model solutions as ground truth, the relative error of the NN predictions
was found to be very low — between 1% and 2% at all rigidities and for both NN models. Thus, the
NNs serve as highly accurate surrogates for the numerical model within the domain of parameter
space used for training and testing. Figure A.1 shows three examples of the positive polarity NN
predictions vs. model solutions from [Corti et al., 2019] with numerical instabilities of varying
severity.

3.3 HMC

The dataset used to train our negative and positive polarity NNs (detailed in section 3.2) comprises
model parameter data over 210 time intervals of interest. To infer the model parameters for each
of these 210-time intervals, we perform HMC to generate samples from the posterior for each
time interval. The five model parameters are k0∥, a∥, b∥, a⊥, and b⊥. Tilt angle, HMF intensity at

Earth, and solar wind speed (α, IHMF , and V⃗SW ) are fixed to their 1-year backward average for
each interval, using data from OMNIWeb1 and the Wilcox Solar Observatory2. The likelihood of a
sampled parameter is defined as

p(x|z) = exp(
−χ2(x, x̂)

2
) (2)

where χ2 is the standard chi-squared between the GCR fluxes predicted by the model (x̂) and the
observed GCR flux (x). This likelihood function is chosen as it gives a high likelihood of low χ2

values and a low likelihood of high χ2 values. It should be noted that the use of a surrogate NN
gives a strong bias on likelihood smoothness, which is appropriate for our application but may not be
universally applicable.

Since our NNs are trained on samples from a limited domain of parameter space, they should not be
expected to generalize well outside this domain. Thus, we prevent the HMC from sampling outside
the “trusted” domain with a prior distribution, p(z). This prior is uniform in the domain of the training
data and rapidly decays in every direction outside the domain. The strength of this penalty and other
hyperparameters are detailed in A.2. This effectively prevents the HMC from accepting samples
beyond the trusted region.

3.4 Results

Figure 2 shows an example of the probability distribution functions (PDFs) of the free parameters
obtained with the HMC. The PDF is very narrow for the normalization of the DC (k0∥) and the slopes
of the perpendicular DC (a⊥ and b⊥), meaning that these parameters are well constrained by the data,
while it is wider for the slopes of the parallel DC (a∥ and b∥), meaning that these parameters are not
well constrained by the data. This is expected since perpendicular diffusion dominates the transport
processes in the majority of the heliosphere. These results are in agreement with what was found
in Corti et al. [2019] using an ordinary least-square minimization procedure on the same AMS-02
data and numerical model. Our method improves on the results of Corti et al. [2019] by smoothing
the numerical instabilities of the model and calculating posterior PDFs for all free parameters of the
numerical model, as well as computing posterior PDFs on the predicted GCR fluxes.

1https://omniweb.gsfc.nasa.gov/
2http://wso.stanford.edu/Tilts.html
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Figure 2: 2D and 1D PDFs of the diffusion coefficient parameters obtained from the HMC for GCR
flux measured by AMS-02 in the positive polarity time interval 2014/09/11-2014/10/07. The top
right panel shows a comparison of the maximum likelihood NN model (red line) with observations,
together with the 68% and 95% credible intervals.

4 Discussion

To the best of our knowledge, this is the first demonstration of an NN surrogate likelihood with
HMC. We have shown that this is a practical method that can be used to solve previously intractable
problems. A potential problem of this approach was identified — that the NN surrogate should not
be trusted outside the domain of the training data — and we proposed and tested a solution. The
method was used to provide state-of-the-art constraints on the heliospheric transport of galactic
cosmic rays. The resulting PDFs characterize the uncertainty on each transport parameter, which
will enable better uncertainty estimates for GCR flux forecasts when planning future space missions.
Nevertheless, we recognize that our method’s applicability may not extend to all problem domains,
given its pronounced bias toward likelihood smoothness with the use of a surrogate NN and the
reliance on the availability of simulation data to train the NN.
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6 Appendix

Table A.1: Dataset information
Experiment Period Position (r, θ) Measurements

PAMELA b 2006 – 2014 Earth LEO H: 0.4 – 50 GV
AMS-02 c 2011 – 2019 Earth LEO H, He: 1 – 100 GV
b PAMELA monthly protons are available at the ASI Cosmic Ray Database:
https://tools.ssdc.asi.it/CosmicRays/.

c AMS-02 daily protons are available at : https://ams02.space/sites/
default/files/publication/202105/table-s1-s2824.csv.
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Figure A.1: Modulated proton flux as a function of rigidity computed via the model from Corti et al.
[2019] and our NN for three typical examples with varying levels of numerical instability. The NN
incorporates our intuition that the flux varies slowly with rigidity and predicts a smooth curve even
when the model solution exhibits numerical instabilities. The three examples shown are test samples
not used for training the NN.
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Table A.2: Hyperparameter choices for the NN and HMC. Optimal hyperparameters were selected by
hand.

Neural Network

Initial Learning Rate 1 ∗ 10−6

Max Epochs 100
Optimizer Adam

LR Schedule ReduceLROnPlateau
Early Stopping Monitored Validation loss
Regularization L2, weight 1 ∗ 10−6

Loss Function MSE
Batch Size 128

Number of Layers 3
Number of Neurons 256, 256, 32
Activation Functions SeLU, SeLU, Linear

Dataset size 2,088,385 positive polarity
1,987,658 negative polarity

Train/Test Split 90/10
Data Normalization Inputs: Min-Max scaling

Outputs: Log scaling

Hamiltonian Monte Carlo

Number of Results 110,000
Kernels NUTS

DualAveragingStepSizeAdaptation
Number of Burn-in steps 1,000

Number of Adaption Steps 800
Step Size 1 ∗ 10−3

Max Tree Depth 10
Max Energy Difference 1,000
Unrolled Leapfrog Steps 100

Number of Time Intervals 210
Penalty for out-of-bound samples 1 ∗ 106
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