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Abstract

In many applications, Neural Nets (NNs) have classification performance on par or
even exceeding human capacity. Moreover, it is likely that NNs leverage underlying
features that might differ from those humans perceive to classify. Can we “reverse-
engineer” pertinent features to enhance our scientific understanding? Here, we
apply this idea to the notoriously difficult task of galaxy classification: NNs have
reached high performance for this task, but what does a neural net (NN) “see”
when it classifies galaxies? Are there morphological features that the human eye
might overlook that could help with the this task and provide new insights? Can
we visualize tracers of early evolution, or additionally incorporated spectral data?
We present a novel way to summarize and visualize galaxy morphology through
the lens of neural networks, leveraging Dataset Distillation, a recent deep-learning
methodology with the primary objective to distill knowledge from a large dataset
and condense it into a compact synthetic dataset, such that a model trained on
this synthetic dataset achieves performance comparable to a model trained on the
full dataset. We curate a class-balanced, medium-size high-confidence version of
the Galaxy Zoo 2 dataset, and proceed with dataset distillation from our accurate
NN-classifier to create synthesized prototypical images of galaxy morphological
features, demonstrating its effectiveness. Of independent interest, we introduce
a self-adaptive version of the state-of-the-art Matching Trajectories algorithm to
automate the distillation process, and show enhanced performance on computer
vision benchmarks.

1 Introduction and Background

The study of galaxy morphology is fundamental in observational cosmology. Morphological features
are essential for determining a galaxy’s dynamical state and interpreting its evolutionary history.
Since Hubble’s first classification in 1926, significant efforts have been dedicated to designing
morphological classification schemes and data collection methods. For instance, Galaxy Zoo [19, 18],
through its crowd-sourcing approach for large-scale analysis, classifies galaxies from the Sloan
Digital Sky Survey (SDSS) [31] into three basic types: elliptical (early-type), spiral (late-type), and
mergers. Its successor, Galaxy Zoo 2 (GZ2, 30), further expands this classification scheme to include
more detailed morphological features, such as bars, bulges, and the shape of edge-on disks. Deep
learning techniques, specifically those based on deep convolutional neural networks (CNNs, 17), have
emerged as automated approaches for galaxy morphology classification [7, 14], yielding impressive
results surpassing previous methods in predicting classifications made by humans. CNN-based galaxy
morphology classification has now been applied across multiple different surveys, including SDSS
[8, 26, 10], CANDELS [15, 12, 10], and Dark Energy Survey [3, 2] with predicted features included
in official surveys such as the new catalogue in SDSS-IV DR17 [9].

Visual morphologies are notoriously hard to classify, given the variability of the data (e.g. sensitivity
to red-shift). Prior approaches have aimed to find a set of parameters that correlate with the visual
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Figure 1: Classification tree based on Galaxy Zoo 2. The bottom two rows are STM-distilled
images 128 × 128 (1 image per class): (a) starting from random real images, without rotational
augmentation of the training set; (b) distilled from a rotationally augmented training set with synthetic
data initialized from noise.

morphology of a galaxy. These traditionally include concentrations, asymmetries, clumpiness (or
smoothness), Gini coefficient, moments of light etc. [25, 13, 23]. Unfortunately, the values of
these parameters strongly depend on the data quality and red-shift, as they overlook an enormous
amount of information contained in the pixels themselves. Thus, these approaches only provide rough
morphological classifications into 2 or 3 classes.

We thus ask: Can the success of deep-learning based classification be leveraged to provide summary
representations of morphological information directly in the shape of galaxy images? Such a
transformation from successful CNN-based classifiers to synthesized summary images could then be
extended to classifiers that process additional information (e.g. spectral data) for galaxy classification
and generate images that are prototypical of morphology types even when additional non-visual
measurement data is incorporated.

In this work we propose to leverage Dataset Distillation (DD) as a tool to achieve alternative
summarization of galaxy morphologies in image form. DD, originally proposed by [28] in computer
vision, can be viewed as a form of dataset curation as a bi-level optimization task involving a neural
net classifier. It aims to distill knowledge from a large dataset into a smaller one to reduce the burden
of large-scale analysis on images. The dataset distillation optimization performs gradient descent
on a synthesized dataset (outer loop) with respect to the loss (on real data) of a network trained on
the distilled data (inner loop). Many directions have emerged from the initial bi-level optimization
[28], including tractable approximations of the inner loop [21, 22, 20, 35] and new objectives for
optimization such as gradient matching [32, 34], trajectory matching [1, 6], distribution matching
[27, 33] (see [24] for a recent survey).

Here, we focus on the Matching Training Trajectories (MTT) algorithm [1], reaching recent state-
of-the-art for various distillation benchmarks. We propose a new modification to MTT, called
Self-Adaptive Trajectory Matching (STM) which allows for enhanced performance and ease on
computer vision benchmarks1. To apply it to galaxy distillation, we first curate an illustrative
customized version of the GZ2 dataset as shown in Figure 1, and train a highly accurate CNN-based
classifier on it. By condensing a considerable number of images into one or a few synthetic images
for each category of galaxy, we can significantly reduce analysis time while revealing the essential
morphological features for these categories. Dataset distillation emphasizes the features in the data
that are essential to the classification: for instance, for our galaxy dataset, we will see that it enhances
the blue features that are tracers of recent star formation in the galaxy.

2 Methodology and Data

In the Dataset Distillation (DD) framework, the goal is to synthesize a compact dataset Dsyn that
can replicate the performance of a larger, real dataset D ∈ (X ,Y) when used with the same learning
algorithm f . The optimal parameters for f estimated on D and Dsyn are represented as θD and θDsyn ,
respectively. The objective of DD is to optimize:

1Details of the new algorithmic STM approach are relegated to the appendix.
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argmin
Dsyn

(|fθDsyn (x)− fθD (x)| ∀x ∈ D) (1)

This is an instance of a bilevel optimization problem where the output of one optimization (f
trained on Dsyn) is fed into another optimization problem (the generalization error on D), which is
computationally hard.

Matching Training Trajectories (MTT): The MTT method proposed by [1] aims to approximate
the optimization in Equation (1) via gradient descent by minimizing the difference between θDt and
θ
Dsyn

t , for each iteration t of weight updates during training. The objective is to identify a compact
dataset Dsyn such that when training on it, the model parameters θDsyn closely resemble the teacher
model parameters θD when trained on the real dataset D throughout time. If we assume that the
learning algorithm f takes T iterations to converge, the MTT objective can be formulated as:

argmin
Dsyn

(
∥θDsyn

t+N − θDt+M∥22/∥θDt − θDt+M∥22 ∀t ∈ [0, . . . , T )
)

(2)

In the equation above, θDt represents the model parameters for f after t iterations of training on
dataset D. The term ∥θDt − θDt+M∥22 serves as a normalization factor. While, in theory, the values
of N and M should be equal (indicating a comparison after an equal number of gradient descent
updates), in practice, especially when mini-batches are utilized for training and given D ≫ Dsyn, the
ratio for N : M becomes a hyperparameter.

MTT, while powerful, exhibits some shortcomings that stand in the way of scalability and practicality.
In particular, it has a complex hyperparameter space and lacks a clear stopping criterion. We
thus propose Self-adaptive Trajectory Matching (STM) to achieve two desiderata: eliminate some
trajectory hyper-parameters and introduce an early stopping mechanism that can accurately halt the
training process upon reaching the optimal result. All further details, as well as benchmarking of
STM on standard vision datasets are relegated to Appendix A.1, as here we wish to focus on the topic
of the workshop: its connection to physics.

Galaxy Zoo 2 (GZ2) and our curated GZ2: GZ2 [30] is renowned for its vast collection of
243,500 galaxies and the most reliable morphological classifications. In the GZ2 project, human
volunteers are presented with galaxy images and are tasked with providing detailed descriptions
of their morphologies by answering a series of questions along a classification tree regarding its
morphology, such as “Is the galaxy simply smooth and rounded, with no sign of a disk?” The GZ2
tree encompasses 11 classification tasks, with a total of 37 potential responses, leading to a vast
number of possible classes with extreme class imbalance, with image counts ranging from 1,761
to 87,139. To partly mediate this, we simplify the classification tree to only 9 leaf nodes (classes),
as illustrated in Figure 1 by merging smaller, similar classes. Each classification is labeled with a
confidence determined by averaging across responses. To assess the reliability of the dataset, we
computed the average confidence level across the 9 classes to lie around 0.53, indicating sub-optimal
data quality. To address this and restore class balance, we opted to select the top 600 most confidently
classified galaxy images for each class for an average score of 0.79, dividing them into 500 train
and 100 test images per class. This “higher-confidence" version of GZ allows for much higher
training and test accuracies. For instance, our CNN classifier only achieves 56% accuracy on the
entire GZ dataset, while giving 89% test accuracy on our curated dataset. Moreover, the much
smaller size of the curated data set enables active learning: astronomers can follow-up on these
archetypes with additional spectroscopic and multi-frequency observations. Additionally, noting that
data augmentation is often helpful in deep learning applications and given that galaxy imaging does
not have a preferred orientation, we also construct an augmented curated GZ2 by rotating each galaxy
image 36 degrees for 10 times, resulting in 45,000 train and 900 (non-augmented) test images.

3 Experiments and Results

Experimental Setup: We deploy a simple 3-layer 128-width ConvNet [11], which aligns with the
previous DD benchmarks [5]. For data augmentation during the training of the teacher trajectory,
we employ DSA [32]. During the distillation process, Dsyn can be initialized in two distinct ways:
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Table 1: Test accuracy of DD deployed on curated GZ2 dataset (with and without augmentation) with
real and noisy initialization, as well as random baseline.

Img/Cls Random curated GZ2 curated GZ2-Aug
real noise Full Dataset real noise Full Dataset

1 27.4 ± 0.5 53.1 ± 1.7 54.6 ± 1.1 84.5 ± 0.6 54.7 ± 0.7 54.6 ± 2.0 89.0 ± 0.510 46.0 ± 0.9 63.9 ± 1.0 62.4 ± 0.9 68.4 ± 1.2 67.4 ± 1.3

Figure 2: 10 images per class distillation result for curated GZ2 with rotational augmentation;
synthetic dataset initialized from real images (left) and noise initial (right). Each row belongs to one
class ordered as in Figure 1 (more images in Appendix A.4).

(1) Gaussian noise initialization and (2) initialization with real images, randomly sampled from the
original dataset. To assess performance, we train five separate networks from scratch on each distilled
dataset and report test accuracy. For comparison, we create a non-synthetic baseline of size |Dsyn| by
randomly sampling i images from each class in the original dataset and using them to train networks
in a manner consistent with the above approach. Detailed hyperparameters setting can be found in
Appendix A.3.

Distilling Galaxy Morphologies: Table 1 details the distillation results for both the basic and
augmented curated GZ2 datasets, with 1 IPC examples shown in Figure 1. In our experiments, real
synthetic data initialization (from random images) typically outperforms initialization from noise.
While augmentation does not significantly improve 1 IPC accuracy, it boosts 10 IPC as well as
accuracy when trained on the entire data by approximately 5%. Note that our CNN classifier yields a
test-accuracy of 89%.

Distilled images capture the learned features of the model, providing insights into galaxy morphology
that go beyond predefined characteristics, such as those used in the GZ2 survey questions. By
optimizing classification performance, distilled images highlight key attributes for differentiation.
The application of data distillation to galaxy imagery signifies the potential for leveraging machine-
learned information to provide a fresh perspective and complement existing knowledge about galaxies.

For example, we can look at the 1 IPC distilled images in Figure 1 (a). For Class 0-4 galaxies, key
differentiators include core size and arm shape, taking into account the varying orientations of the
galaxies. On the other hand, Classes 5&7 exhibit a floral pattern due to asymmetrical arms; a smooth
core for Class 7&8 galaxies suggests the absence of a galactic bar. Distilled images provide a better
understanding of a galaxy category’s overall characteristics. For instance, the blue tint of spiral
galaxies indicates the presence of young stars. Compared to 1 IPC images, the 10 IPC versions retain
more recognizable features, making them visually closer to real galaxies, as shown in Figure 2.

4 Discussion

We present a novel study that employs dataset distillation for the extraction of galaxy morphology
features. We introduce a self-adaptive methodology, STM, which outperforms previous work and
provide illustrative results to demonstrate that our approach is capable of distilling knowledge about
galaxy morphologies, providing unique insights on key galaxy attributes that are not easily captured by
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human-based classification schemes. This opens the possibility of extracting even more informative
images when adding spectroscopic or multi-frequency data as additional inputs to the classifier in
the future. Our curated GZ2 dataset is of independent interest as an enabler for active learning of
additional features on high-quality data.

Software and Data

Our code and the curated GZ2 dataset are available at https://github.com/HaowenGuan/
Galaxy-Dataset-Distillation.
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A Appendix

A.1 Self-Adaptive Trajectory Matching (STM) - an improved Matching Trajectories
Algorithm

MTT [1], while powerful, exhibits some shortcomings that stand in the way of scalability and
practicality. i) MTT has a relatively large number of hyper-parameters that interact in a complex way:
there are three parameters to control the trajectory matching mode and three different learning rates
to configure, necessitating a significant amount of grid searching in hyper-parameter-space to achieve
the optimal result. For instance, TESLA [6], a memory-optimized variant of MTT, outperforms MTT
by varying hyper-parameter settings. ii) MTT lacks a clear stopping criterion for the distillation; the
training process runs through a predetermined iterations. However, different datasets require different
optimal iterations, and fixing the maximum iteration can lead to either excessive computation or
sub-optimal training.

Algorithm 1: Self-Adaptive Trajectory Matching (STM)

Input: Teacher parameter trajectory set ΘD, student network matching steps N , initial step
size α, threshold value for hypothesis test λ, maximum iterations per stage Maxiter

1 Initialize: Dsyn, iter = 0, t = 0, T = 1
2 while iter < Maxiter do
3 Increment iter and t by 1, if t reaches T , reset t back to 0
4 Sample θDt and θDt+1 ∈ ΘD , set θDsyn

t = θDt
5 for i = 1, ..., N do
6 Update θ

Dsyn

t+i = θ
Dsyn

t+i−1 − α∇ℓ(θ
Dsyn

t+i−1;Dsyn)

7 Update Dsyn and α 2via gradient descent, minimizing
∥θDsyn

t+N −θD
t+1∥

2
2

∥θD
t −θD

t+1∥2
2

8 Repeat lines 4-6 replacing t by T to get θDsyn

T+N

9 Collect validation loss
∥θDsyn

T+N −θD
T+1∥

2
2

∥θD
T −θD

T+1∥2
2

into array ℓval

/* Expand epoch pool if validation loss ℓval decreases fast enough */
10 if corr(ℓval, time) < −λ

√
1/(size(ℓval)− 2) then

11 Expand epoch pool by increment T , Reset iter, ℓval

Output: Dsyn

Self-Adaptive Trajectory Matching (STM): To simplify and remedy some of these shortcomings,
we propose Self-adaptive Trajectory Matching (STM) that achieves two desiderata: it eliminates the
need for M and T in Equation (2), and introduces an early stopping mechanism that can accurately
halt the training process upon reaching the optimal result.

In vanilla trajectory matching algorithms, distillation involves selecting a maximum starting epoch T
and randomly sampling a starting point t ∈ [0, . . . , T ) on the trajectory ΘD := {θDt }T−1

0 to proceed
with parameter matching as in Equation 2. The T can be interpreted as the size of trajectory ΘD.
MTT [1] demonstrates that the trajectory size T and the distillation performance exhibit a parabolic
relationship, and the optimal T is positively correlated with the number of images per class (IPC) to
distill for the synthetic dataset. An interpretation is that each teacher epoch θDt carries an amount
of knowledge, and the synthetic dataset (student) has a certain “capacity". If we can measure the
capacity of a synthetic dataset during distillation, we can decide whether we should feed more teacher
epochs to the student or decide to end the distillation.

To achieve this goal, we propose using a validation loss curve as an indicator of the capacity of the
synthetic dataset. This validation loss is calculated by matching Dsyn on a part of the trajectory
outside the training trajectory ΘD. If the validation loss decreases in a statistically significant manner,
we infer that the synthetic dataset possesses “capacity for more knowledge.” Consequently, we

2As in MTT [1], we make the step size α learnable. This adaptability enables the distillation algorithm to
autonomously determine the optimal step size for aligning with the teacher trajectory.
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expand ΘD by adding θDT (or equivalently, by incrementing T ). To determine statistically significant
decreases in validation loss, we employ hypothesis testing [29] on the correlation between validation
losses (as time-series data) and time (distillation steps). Specifically, the null hypothesis is that the
time-series data display an average zero correlation with time, and the deviation σ is proportional to√
1/(size(ℓval)− 2) (see Appendix A.2). We establish a threshold of λσ to convincingly reject the

null and expand training trajectory ΘD during distillation. If we cannot reject the null hypothesis after
a certain maximum distillation steps, denoted as Maxiter, we stop. Furthermore, our findings suggest
that fixing the teacher matching epoch to M = 1 is optimal, and cycling through [0, . . . , T ) is better
than randomly sampling from that interval. An ablation study on the parameter λ is presented in
Figure 4, and shows that there is minimal variation when the value is sufficiently large. Our approach
is summarized in Algorithm 1.

Benchmarking STM: We believe our STM method to be of independent interest and have bench-
marked it on CIFAR-10 and CIFAR-100 [16], two key computer vision datasets, using 1/10/50
images per class (IPC) in Table 2. We compare it with the original MTT [1] and a baseline model
trained on the same number of randomly selected images from each class (Random). STM shows
slight performance gains over MTT as it aims to streamline the data distillation process, enhance the
algorithm’s robustness, and enable it to consistently achieve optimal results. Figure 3 indeed shows
faster convergence and much smaller variance between trials. We see that STM consistently yields
improvement, both in performance and in convergence and stability, and we advocate to adapt MTT
methods that are currently used to include the modifications brought by STM.

Table 2: Performance (test accuracy %) of MTT and STM, trained on distilled data initialized from
random real images.

Img/Cls Random MTT Ours Full Dataset

CIFAR-10
1 14.4 ± 2.0 46.3 ± 0.8 47.7 ± 0.1

84.8 ± 0.110 26.0 ± 1.2 65.3 ± 0.7 65.7 ± 0.2
50 43.4 ± 1.0 71.6 ± 0.2 72.7 ± 0.2

CIFAR-100 1 4.2 ± 0.3 24.3 ± 0.3 24.4 ± 0.4 56.2 ± 0.310 14.6 ± 0.5 40.1 ± 0.4 41.6 ± 0.3

Figure 3: Comparison of MTT and STM distilla-
tion process (3 trials each, starting from random
real images). STM shows a faster convergence
speed and higher final accuracy.

Figure 4: Ablation study for λ-sigma threshold
of STM. A higher value implies a stricter require-
ment for statistical significance of decreasing loss
trend. We fix our algorithm to use 5-sigma.

A.2 Standard Error of Correlation Coefficient Between Random Data and Time

The correlation coefficient, denoted as r, quantifies the strength and direction of the linear relationship
between two sequences of data with the same length n. The standard error Sr of a correlation
coefficient is given by (see e.g. [4]):

Sr =

√
1− r2

n− 2
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Consider a scenario where we sample n data points from a normal distribution N (0, 1) and treat
them as a time series. When computing the correlation coefficient of this data with respect to time,
the true correlation coefficient is r = 0, since a randomly sampled dataset is expected to have no
correlation with time. In this specific case, the standard error (or deviation σ) is:

σ =

√
1

n− 2

which is the functional form we use in Algorithm 1.

A.3 Experimental Setup and Hyperparameters

We deploy a simple 3-layer 128-width ConvNet [11] following previous DD benchmark [5]. Like
MTT, we apply ZCA whitening on all benchmark datasets for image preprocessing, and employ DSA
[32] for augmentation during training and evaluation. While most distillation hyper-parameters remain
the same as MTT to ensure a fair comparison, certain parameters are adjusted due to modifications in
the algorithm.

Table 3 shows the hyperparameters we use for STM for various datasets. We set λ = 5 in our
hypothesis testing step but note that the algorithm is highly insensitive to the value of λ. We also
have a parameter for maximum distillation steps, Maxiter; its value is fixed to Maxiter = 1000 in
our experiment.

Table 3: Hyper-parameters used for our best-performing distillation experiments. We adopt the
terminology and definitions from MTT [1] (Pixel, Step Size).In the STM algorithm, M , the number
of expert epochs is fixed to 1.

dataset Img/Cls Synthetic Steps
(N )

Learning Rate
(Pixels)

Initial Step Size
(α)

Learning Rate
(Step Size) ZCA

CIFAR-10
1 50 1000 0.01 0.01 Y

10 30 1000 0.01 0.01 Y
50 30 1000 0.01 0.01 Y

CIFAR-100 1 20 1000 0.01 0.01 Y
10 20 1000 0.01 0.01 Y

GZoo2 1 50 10000 0.0001 0.01 N
10 20 10000 0.0001 0.01 N

A.4 Additional images

Here we present additional visualizations of the distilled data from GalaxyZoo for various initializa-
tions (random or from noise) and distilled images per class.

Figure 5: Distilled images 1 img/class without augmentation. Left: initialize from noise; Right:
initialize from real

Figure 6: Distilled images 1 img/class with augmentation. Left: initialize from noise; Right: initialize
from real
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Figure 7: Distilled images 10 img/class without augmentation. Left: initialize from noise; Right:
initialize from real
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