
End-to-End Mesh Optimization of a Hybrid Deep
Learning Black-Box PDE Solver

Shaocong Ma
University of Utah
s.ma@utah.edu

James Diffenderfer
Lawrence Livermore National Laboratory

diffenderfer2@llnl.gov

Bhavya Kailkhura
Lawrence Livermore National Laboratory

kailkhura1@llnl.gov

Yi Zhou
University of Utah
yi.zhou@utah.edu

Abstract

Deep learning has been widely applied to solve partial differential equations (PDEs)
in computational fluid dynamics. Recent research proposed a PDE correction
framework that leverages deep learning to correct the solution obtained by a PDE
solver on a coarse mesh. However, end-to-end training of such a PDE correction
model over both solver-dependent parameters such as mesh parameters and neural
network parameters requires the PDE solver to support automatic differentiation
through the iterative numerical process. Such a feature is not readily available
in many existing solvers. In this study, we explore the feasibility of end-to-end
training of a hybrid model with a black-box PDE solver and a deep learning model
for fluid flow prediction. Specifically, we investigate a hybrid model that integrates
a black-box PDE solver into a differentiable deep graph neural network. To train
this model, we use a zeroth-order gradient estimator to differentiate the PDE solver
via forward propagation. Experiments show that the proposed approach based on
zeroth-order gradient estimation underperforms the baseline that computes exact
derivatives using automatic differentiation, but outperforms the baseline trained
with a frozen input mesh to the solver.

1 Introduction

Studying fluid dynamics presents significant challenges in the physical sciences due to the complex
nature of solving Navier-Stokes partial differential equations (PDEs) [4]. Traditional numerical
solvers employ finite-difference methods to solve PDEs over highly granular discrete meshes, de-
manding substantial computational burden. To address these challenges, data-driven deep learning
techniques have been developed to directly predict physical outcomes in computational fluid dy-
namics [3, 8, 16, 15, 6]. However, these approaches often require a substantial volume of data.
Consequently, the learned models often exhibit limited generalizability when solving PDEs with
out-of-distribution physical parameters (e.g., angle of attack).

Recently, a promising approach for PDE correction has emerged to enhance the generalization
performance [6]. This approach jointly optimizes a deep model and the PDE solver’s input mesh to
correct coarse simulation outcomes. However, this approach requires that the PDE solver supports
automatic differentiation through the numerical solving process – an attribute that often demands
substantial programming effort, especially for solvers in advanced application domains. On the other
hand, observe that mesh optimization is considerably less complex than neural network parameter
optimization, it is possible to optimize the mesh using noisy algorithms that do not rely on exact
gradient queries. Inspired by these insights, we are motivated to study the following question.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



• Q: Can we perform end-to-end deep learning for fluid flow prediction with black-box solvers
that do not support automatic differentiation?

In this work, we provide an affirmative answer to the above question. Our contributions are in two-
fold. First, we develop a zero-order type algorithm that can optimize the deep model’s parameters
and solver’s mesh parameters end-to-end without back-propagation through the solver. Consequently,
one can integrate any black-box solvers into the system and apply our algorithm to train this system.
Second, experiments show that the proposed zeroth-order approach produces correction models that
outperform the baseline model trained using first-order method with a frozen input mesh to the solver.

2 Hybrid Model for Fluid Flow Prediction

2.1 The SU2 PDE Solver

SU2 is a numerical solver developed for solving PDEs that arise in computation fluid dynamics [7]. It
applies the finite volume method (FVM) to solve PDEs and calculate certain physical quantities over
a given discrete mesh. To explain how SU2 works, consider the task of calculating the airflow fields
around an airfoil. The input to SU2 includes the following three components: (1) Mesh: a discrete
approximation of the continuous flow field; (2) Angle of attack (AoA): the angle between the chord
line of the airfoil and the oncoming airflow direction; (3) Mach number: the ratio of the airfoil’s
speed to the speed of sound in the same medium. Given the above input and initial conditions, SU2
can calculate the air pressure and velocity values at each node of the mesh.

2.2 The CFD-GCN Learning System

To accelerate SU2 simulations, [6] developed CFD-GCN – a hybrid machine learning model that
integrates the physical SU2 solver with a graph convolution network (GCN). This hybrid model aims
to predict the SU2 simulation outcome associated with fine mesh using that associated with coarse
mesh, as illustrated in Figure 1.

Figure 1: Illustration of CFD-GCN model [6].
Both the GCN model parameters and the coarse
mesh’s node positions are trainable.

Specifically, denote the fine mesh and coarse
mesh as Mfine and Mcoarse, respectively. Each
mesh consists of a list of nodes specified by po-
sitional x, y-coordinates. Now consider a set
of n settings of the AoA and Mach number pa-
rameters, and denote them as {P 1, P 2, ..., Pn}.
For the i-th parameter setting P i, denote the
corresponding simulation outputs produced as

Oi
fine = Sol(Mfine, P

i), (1)

Oi
coarse = Sol(Mcoarse, P

i), (2)
where Sol(·, ·) stands for the SU2 solver. Fur-
ther denote the graph convolutional network
model as GCNθ, where θ corresponds to the
model parameters. Then, the overall training
objective function can be written as

min
θ,Mcoarse

1

n

n∑
i=1

L
(

GCNθ(Mfine, O
i
coarse), O

i
fine

)
, (3)

where L stands for the MSE loss. Here, the goal is to jointly learn and optimize the GCN model
parameters θ and the coordinates of the nodes in the coarse mesh Mcoarse. The coarse mesh usually
contains very few number of nodes, and hence their positions critically affect the coarse simulation
outcome Ocoarse, which further affects the prediction accuracy of the GCN model.

2.3 Differentiability of Hybrid Model

To solve the above optimization problem, one standard approach is to use gradient-based methods
such as SGD, which require computing the gradient [∂L∂θ ;

∂L
∂Mcoarse

] using stochastic samples via back-
propagation. Specifically, the partial derivative ∂L

∂θ can be calculated by standard machine learning

2



packages that support automatic differentiation (e.g., PyTorch [12] and TensorFlow [1]). For the
other partial derivative ∂L

∂Mcoarse
, it can be decomposed as follows by the chain rule:

∂L
∂Mcoarse

=
∂L

∂Ocoarse
· ∂Ocoarse

∂Mcoarse
. (4)

Note that the term ∂L
∂Ocoarse

can also be calculated by standard machine learning packages. The
challenge is to compute the other term ∂Ocoarse

∂Mcoarse
, which corresponds to the derivative of the output of

the solver with regard to the input coarse mesh. In [6], the authors proposed to compute this term
by adopting the SU2 solver to support automatic differentiation. However, this requirement can be
restrictive for general black-box solvers. Notably, in physics and chemistry disciplines, ML models
may be required to interface with experiments or complex simulation codes for which the underlying
systems are non-differentiable [13, 14, 11, 2, 5].

We propose to estimate the partial derivative ∂Ocoarse
∂Mcoarse

by leveraging the simulation outcomes, i.e.,
forward propagation through the solver [10]. The coordinate-wise zeroth-order gradient estimator
estimates the gradient of the solver via the following steps. First, we sample a mini-batch b ∈ N
of the coordinates of the input coarse mesh nodes uniformly at random. In our setting, each node
has two coordinates to specify its position in the x-y plane. We denote the index of these sampled
coordinates as {ξ1, ξ2, ..., ξb}, and denote the Euclidean basis vector associated with the coordinate
ξj as eξj . Then, choosing a parameter µ > 0, the coordinate-wise zeroth-order (Coordinate-ZO)
gradient estimator is defined as follows:

(Coordinate-ZO):
∂̂O

∂M
:=

1

b

b∑
j=1

O(M + µeξj )−O(M)

µ
eξj . (5)

To elaborate, Coordinate-ZO estimates the gradient based on the finite-difference formula, which
requires to perturb the input mesh M over the uniformly sampled coordinates {eξj}bj=1 and compute
their corresponding simulation outcomes via running the solver. The main advantage of using the
Coordinate-ZO estimator is its high asymptotic accuracy as µ tends to 0. When µ ↓ 0, each term in
the above summation converges to the exact partial gradient of O with regard to the corresponding
node coordinate. In practice, however, setting µ too small can lead to numerical instability and
less accurate evaluations. The bias due the a non-vanishing µ often results in subpar performance
compared to automatic differentiation (AD).

Furthermore, comparing to the finite-difference method, Coordinate-ZO requires only b function
evaluations per mesh update step. For instance, a forward pass in SU2 takes approximately 2.0
seconds on the coarse mesh [6], leading to around 1000 seconds for a full finite-difference step, while
the Coordinate-ZO estimation takes only 2.0× b seconds. Due to such high time cost, we did not
provide the necessary rounds of SU2 simulations of obtaining the required accuracy; instead, we
trade-off between the function call complexity and the model accuracy by tuning the parameter b.

While we considered other gradient estimators, like Gaussian and uniform smoothing, Coordinate-ZO
was selected based on its empirical effectiveness with b = 16 and µ = 0.001. We did not perform
further experimentation or a comprehensive grid search, as comparing gradient estimators was not
the primary aim of our research.

2.4 Training with Warm-Start

Asymmetry in Optimization. One key observation is that the optimization of the objective function
in eq. (3) is highly asymmetric between the network model parameters θ and the coarse mesh
Mcoarse. To elaborate, optimizing a deep neural network’s model parameters is challenging due to
the nonconvex nature of the optimization problem and because the trained parameters are often
substantially different from the randomly initialized parameters. Thus, in the initial training phase
when the neural network parameters’ gradients are large and noisy, they tend to amplify the noise of
the mesh nodes’ estimated gradients through the chain rule in eq. (4), which further slows down the
overall convergence and degrades the generalization performance.

Warm-Start. Aiming to further improve the training of the hybrid model via zeroth-order approaches,
we introduce a warm-start strategy to enhance convergence and generalization. This entails a two-
stage training process:

3



• Warm-up Stage: Initially, we freeze the coarse mesh and focus solely on training the neural network
parameters for 300 epochs. Given that the coarse mesh remains unchanged, no extra simulations
are called upon during this phase.

• Training Stage: Leveraging the model developed in the prior stage, we unfreeze the coarse mesh
and jointly train the network parameters and mesh using the zeroth-order training algorithm.

3 Experiment Results and Discussion

We apply the aforementioned zeroth-order gradient estimators with parameter µ = 1e−3 to estimate
the gradient of the PDE solver output with regard to the input coarse mesh coordinates, and then
use the full gradient [∂L∂θ ;

∂L
∂Mcoarse

] to train the model parameters θ and the coarse mesh coordinates
Mcoarse by optimizing the objective function in eq. (3).

AoA Mach Number

Training data [-10:1:10] [0.2:0.05:0.45]
Test data [-10:1:10] [0.5:0.05:0.7]

Table 1: List of training data and test data.

The training dataset and test dataset consist of
the range of AoA and mach numbers as shown in
Table 1. The fixed fine mesh Mfine contains 6648
nodes, and the trainable coarse mesh Mcoarse
contains 354 nodes that are initialized by down-
sampling the fine mesh. Moreover, for the train-
ing, we use the standard Adam optimizer [9]
with learning rate 5 × 10−5 and batch size 16
(for sampling the AoA and mach number).

We compare the Coordinate-ZO under warm-start with two baselines: (i) the gradient-based approach
(referred to as Grad) proposed in [6], which requires a differentiable PDE solver; and (ii) the gradient-
based approach but with a frozen coarse mesh (referred to as Grad-FrozenMesh), which does not
optimize the coarse mesh at all. We observe that the Grad method with random initialization performs
better than the warm-start initialization; this result will be used to compare with Coordinate-ZO.

(a) Test loss comparison in the
number of epochs

(b) Test loss comparison in the
number of simulations

Figure 2: Test loss comparison among Coordinate-ZO, Grad
and Grad-FrozenMesh.

We tested Coordinate-ZO with mul-
tiple batch sizes b = 1, 2, 4 for
sampling the node coordinates (see
eq. (5)). Using a larger batch size b
leads to a more accurate estimation on
∂Ocoarse
∂Mcoarse

but requires to more simula-
tions. Therefore, we chose b = 1 to
compare its test loss with that of the
two gradient-based baselines, since it
is most-sample-efficient for achieving
the desired accuracy with the same
number of simulations in our tested
batch sizes b = 1, 2, 4. Figure 2-(a)
shows the obtained test loss curves over the training epochs. The test loss of Coordinate-ZO are lower
than that of the Grad-FrozenMesh approach and are higher than the Grad approach. This indicates
that optimizing the coarse mesh using the Coordinate-ZO estimator leads to a lower test loss than
using a frozen coarse mesh.

We also see that gradient-based mesh optimization performs better than our zeroth-order optimization.
This is expected as the gradient estimated by the Coordinate-ZO estimator is in general sparse
and noisy, which slows down the convergence and degrades the test performance. Though the
SU2 solver achieves better performance due to its automatic differentiation, our proposed hybrid
model is compatible with other solvers which may not have implemented AD method. Figure 2-(b)
illustrates the comparison between Grad and Coordinate-ZO in the number of simulations. The
Grad-FrozenMesh approach does not update the coarse mesh at all and hence is not included in
Figure 2-(b).

The following Figure 3 visualizes the pressure fields for input parameters AoA = 9.0 and
Mach Number = 0.8. The ground truth is obtained by running the SU2 solver on the fine mesh
to convergence. The field predicted by Coordinate-ZO is more accurate than that predicted by the

4



Grad-FrozenMesh baseline, due to the optimized coarse mesh. Also, the zoomed-in yellow region of
the field predicted by our approach is closer to the Grad baseline.

(a) Ground Truth (b) Grad-FrozenMesh (c) Grad (d) Coordinate-ZO, b = 1

Figure 3: Visualization of the pressure fields predicted by Grad, Grad-FrozenMesh, and Coordinate-
ZO with b = 1 for AoA = 9.0 and mach number = 0.8.

4 Conclusion

This study developed a learning system for fluid flow prediction that supports an end-to-end training
of non-differentiable PDE solvers and deep learning models. We investigated the performance of
optimizing this system using one zeroth-order estimator, which allow us to differentiate the solver
without querying the exact gradients. Experiments showed that our approaches have competitive
performance compare to gradient-based baselines, especially when adopting a warm-start strategy.
We expect that our research will help integrate physical science modules into modern deep learning
without the need for substantial adaptation.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the
LLNL-LDRD Program under Project No. 23-ERD-030 (LLNL-PROC-856968).

S. Ma and Y. Zhou’s work are supported by the National Science Foundation under Grants CCF-
2106216, DMS-2134223, ECCS-2237830 (CAREER).

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. TensorFlow: a system for Large-Scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pages 265–283, 2016.

[2] F. Abreu de Souza, M. Crispim Romão, N. F. Castro, M. Nikjoo, and W. Porod. Exploring
parameter spaces with artificial intelligence and machine learning black-box optimization
algorithms. Phys. Rev. D, 107:035004, Feb 2023.

[3] Y. Afshar, S. Bhatnagar, S. Pan, K. Duraisamy, and S. Kaushik. Prediction of Aerodynamic
Flow Fields Using Convolutional Neural Networks. Computational Mechanics, 64(2):525–545,
Aug. 2019.

[4] G. K. Batchelor. An introduction to fluid dynamics. Cambridge university press, 1967.

[5] A. G. Baydin, K. C. NYU, M. Feickert, L. Gray, L. Heinrich, A. H. NYU, A. M. V. M. Neubauer,
J. Pearkes, N. Simpson, N. Smith, et al. Differentiable programming in high-energy physics.
Submitted as a Snowmass LOI, 2020.

[6] F. D. A. Belbute-Peres, T. Economon, and Z. Kolter. Combining differentiable pde solvers
and graph neural networks for fluid flow prediction. In international conference on machine
learning, pages 2402–2411. PMLR, 2020.

[7] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. Su2: An
open-source suite for multiphysics simulation and design. Aiaa Journal, 54(3):828–846, 2016.

5



[8] X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 481–490, 2016.

[9] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] S. Liu, J. Chen, P.-Y. Chen, and A. Hero. Zeroth-order online alternating direction method of
multipliers: Convergence analysis and applications. In International Conference on Artificial
Intelligence and Statistics, pages 288–297. PMLR, 2018.

[11] G. Louppe, J. Hermans, and K. Cranmer. Adversarial variational optimization of non-
differentiable simulators. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1438–1447. PMLR, 2019.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[13] A. Thelen, X. Zhang, O. Fink, Y. Lu, S. Ghosh, B. D. Youn, M. D. Todd, S. Mahadevan, C. Hu,
and Z. Hu. A comprehensive review of digital twin—part 1: modeling and twinning enabling
technologies. Structural and Multidisciplinary Optimization, 65(12):354, 2022.

[14] I. Tsaknakis, B. Kailkhura, S. Liu, D. Loveland, J. Diffenderfer, A. M. Hiszpanski, and M. Hong.
Zeroth-order sciml: Non-intrusive integration of scientific software with deep learning. arXiv
preprint arXiv:2206.02785, 2022.

[15] K. Um, X. Hu, and N. Thuerey. Liquid Splash Modeling with Neural Networks.
arXiv:1704.04456 [cs], Apr. 2017.

[16] S. Wiewel, M. Becher, and N. Thuerey. Latent-space Physics: Towards Learning the Temporal
Evolution of Fluid Flow. arXiv:1802.10123 [cs], Feb. 2018.

6


	Introduction
	Hybrid Model for Fluid Flow Prediction
	The SU2 PDE Solver
	The CFD-GCN Learning System
	Differentiability of Hybrid Model
	Training with Warm-Start

	Experiment Results and Discussion
	Conclusion

