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Abstract

Reinforcement Learning (RL) stands out in finding optimal strategies for complex
tasks without prior knowledge of the dynamics of the system. In this work, we
use RL for automatically discovering Quantum Error Correction (QEC) codes and
their encoding circuits for a given gate set and error model. Our approach is very
general and our implementation is extremely efficient. In particular, we find all
possible stabilizer codes and their encoding circuits that correct single errors for up
to 15 qubits, for an illustrative gate set. All in all, our framework is a versatile tool
for QEC across diverse quantum hardware platforms of interest.

1 Introduction

Fault-tolerant quantum computers promise to solve computational problems that are inaccessible
to the best known classical algorithms. However, quantum information is fragile and protecting it
from the effects of noise remains an outstanding problem. The leading approach to preserve quantum
information is quantum error correction (QEC) [1]. The idea is to redundantly embed the quantum
information within a subspace (called code space) of a larger Hilbert space in such a way that
different errors map the code to mutually orthogonal subspaces. If successful, the action of each of
these errors can be reverted and the computation can continue error-free.

In this work, we propose a new Machine Learning (ML) tool to discover arbitrary stabilizer QEC
codes from scratch using Reinforcement Learning (RL) [2]. Our approach allows us not only to
discover the code itself, but also an optimal sequence of gates that prepare such code, for an error
model and gate set of choice.

Related work: Previous computational methods for QEC code construction were either restricted to
finding a subclass of codes (but not the encoding circuit) associated with graphs [3], or were based on
expensive numerical greedy search for finding stabilizer codes [4]. ML-based methods have also been
developed, e.g. [5–8]. While [7] also set themselves the task of finding both codes and their encoding
circuits, this was done using variational quantum circuits involving continuously parametrized gates,
which leads to much more costly numerical simulations and eventually only an approximate QEC
scheme. By contrast, our RL-based approach does not rely on any human-provided circuit ansatz,
can use directly any given discrete gate set and is able to exploit highly efficient Clifford simulations.
In particular, we are able to discover codes and encoding circuits for both larger number of qubits (14
vs 15) and larger code distances (4 vs 5).
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2 Stabilizer codes

Some of the most promising QEC codes are based on the stabilizer formalism of quantum mechanics
[9], which leverages the properties of the Pauli group Gn on n qubits. The basic idea of the stabilizer
formalism is that many quantum states can be more compactly described by listing the set of n
operators that stabilize1 them instead of listing their 2n coefficients. The Pauli group of a single qubit
G1 is defined as the set of Pauli matrices X,Y, Z with the overall phases ±1, ±i, which form a group
under matrix multiplication. The generalization to n qubits consists of all n-fold tensor products of
Pauli matrices (called Pauli strings and represented as binary arrays of size 2n), and where global
phases can be ignored for the purposes of QEC.

A code that encodes k logical qubits into n physical qubits is a 2k-dimensional subspace (the code
space C) of the full 2n-dimensional Hilbert space. It is completely specified by the set of Pauli strings
SC that stabilize it, i.e. SC = {si ∈ Gn | si|ψ⟩ = |ψ⟩, ∀|ψ⟩ ∈ C}. SC is called the stabilizer group
of C and is usually written in terms of its group generators gi as SC = ⟨g1, g2, . . . , gn−k⟩.
Noise affecting quantum processes can be represented using the so-called operator-sum representation
[10], where a quantum noise channel E induces dynamics on the state ρ according to

E(ρ) =
∑
α

EαρE
†
α , (1)

where Eα are Kraus operators, satisfying
∑

αE
†
αEα = I . The most elementary example is the

so-called depolarizing noise channel,

EDP(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ , (2)

where pI + pX + pY + pZ = 1 and the set of Kraus operators are Eα =
{√pII,

√
pXX,

√
pY Y,

√
pZZ}. Arbitrary errors on n qubits can be described using local depolariz-

ing channels acting on each qubit j independently. A commonly used simplification is the following.
Assume that all error probabilities are identical, i.e. pX = pY = pZ ≡ p (and pI = 1− 3p). Then,
the probability that a given error occurs decreases with the number of qubits it affects. This leads to
the concept of the weight of a Pauli string as the number of qubits on which it differs from the identity
and to a hierarchical approach to building QEC codes. In particular, stabilizer codes are described by
specifying what is the minimal weight in the Pauli group that they cannot detect.

The fundamental theorem in QEC is a set of necessary and sufficient conditions discovered by Knill
and Laflamme (KL conditions) in [11] that state that a code C with associated stabilizer group SC can
detect a set of errors {Eµ} ⊆ Gn if and only if

{Eµ, gi} = 0 , (3)

for at least one gi, or the error itself is harmless, i.e.

Eµ ∈ SC . (4)

The smallest weight in Gn for which any of the above two conditions do not hold is called the
distance of the code. A quantum code that can correct up to weight-t errors must have a distance
of at least d = 2t + 1. If all the errors that are detected with weight smaller than d are detected
through (3), the code is non-degenerate. On the other hand, if some of the errors satisfy (4), the code
is called degenerate. We follow standard notation and write quantum codes of distance d that encode
k logical qubits into n physical qubits as [[n, k, d]]. Finally, it is worth noting that codes with the same
code parameters [[n, k, d]] may have different error-correcting capabilities. Therefore, we will refer to
families of codes with the same code parameters using as classification criteria their quantum weight
enumerators [12]. These are two polynomials whose coefficients count the number of error operators
of weight j in SC and the number of error operators of weight j that commute with all elements of
SC , respectively.

3 Reinforcement learning approach to QEC code discovery

The main objective of this work is to automatize the process of QEC code discovery using RL. The
goal in any RL task is encoded by choosing a suitable reward r, a quantity that measures how well

1An operator O stabilizes a state |ψ⟩ if O|ψ⟩ = |ψ⟩.
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the task has been solved, and consists of an agent (the entity making the decisions) interacting with
an environment (the physical system). In each time step t, the environment’s state st is observed.
Based on this observation, the agent takes an action at which then affects the current state of the
environment. A trajectory is a sequence of state and action pairs that the agent takes. An episode is a
trajectory from an initial state to a terminal state. For each action, the agent receives a reward rt, and
the goal of RL algorithms is to maximize the expected cumulative reward (return), E [

∑
t rt]. The

agent’s behavior is defined by the policy πθ(at|st), which denotes the probability of choosing action
at given observation st, and we parametrized it by a neural network with parameters θ.

Within RL, policy gradient methods [13] optimize the policy by maximizing the expected return
with respect to the parameters θ with gradient ascent. One of the most successful algorithms within
policy gradient methods is the actor-critic algorithm [14]. The idea is to have two neural networks: an
actor network that acts as the agent and that defines the policy, and a critic network, which measures
how good was the action taken by the agent. In this paper, we use a state-of-the-art policy-gradient
actor-critic method called Proximal Policy Optimization (PPO) [15], which improves the efficiency
and stability of policy gradient methods.

In order to encode the state of k logical qubits on n physical qubits one must find a sequence of
quantum gates that will entangle the quantum information in such a way that QEC is possible with
respect to a target noise channel. Initially, we imagine the first k qubits as the original containers of our
(yet unencoded) quantum information, which can be in any state |ψ⟩ ∈ (C2)

⊗k. The remaining n− k
qubits are chosen to each be initialized in the state |0⟩. These will be turned into the corresponding
logical state |ψ⟩L ∈ (C2)

⊗n via the application of a sequence of discrete Clifford2 gates (actions) on
any of the n qubits, updating its code generators (observation) until they satisfy the KL conditions
(3), (4) for the chosen error channel. In Fig.1a we schematize our approach, while Fig.1c shows how
the code generators change when gates are applied.

The most delicate matter in RL problems is building a suitable reward for the task at hand. An option
is to use a scheme where the cumulative reward (which RL optimizes) simply is maximized whenever
all the KL conditions are fulfilled. One implementation of this idea uses the weighted KL sum as an
instantaneous reward:

rt = −
∑
µ

λµKµ , (5)

where Kµ = 0 if either (3) or (4) are satisfied, and Kµ = 1 otherwise. The index µ runs from 1 to
|{Eµ}|, see (6). If all errors in {Eµ} can be detected, the reward is zero, and is negative otherwise.
Here λµ are real numbers that weigh how important each error is. These can in principle be taken to
be λµ = pµ, where pµ is the probability that Eµ occurs, but we will view them as hyperparameters.
A convenient feature of our reward is that one can favor certain types of codes. For instance, we
can target non-degenerate codes only by ignoring (4), or we can favor degenerate codes by choosing
larger λµ values of those errors that satisfy (4). Moreover, making the reward non-positive favors
short gate sequences, which is desirable when wanting to prepare these codes in actual quantum
devices.

Regarding the target error channel, here there are in principle several choices that can be made. The
most straightforward one is choosing a symmetric depolarizing channel of distance d. This means
that the set {Eµ} are all Pauli strings of weight up to d− 1. There are

|{Eµ}|w≤d−1 =

d−1∑
w=0

3w
(
n

w

)
, (6)

which grows exponentially with d. As we will see, this exponential growth of the number of error
operators that have to be tracked will impose the most severe limitation in our approach.

4 Results

RL algorithms exploit fast trial-and-error loops until a signal of a good strategy is picked up and
convergence is reached. It is thus of paramount importance that simulations of our RL environment

2Clifford gates are defined to be those that map Pauli strings to Pauli strings and are generated by the
Hadamard H , the Phase S and the CNOT gates.
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Figure 1: QEC code discovery using RL. a. Scheme of our approach. An error channel, a gate set
and qubit connectivity is chosen. The agent then builds a circuit using the available gate set and
connectivity that detects the most likely errors from the target error model by using a reward based
on the Knill-Laflamme QEC conditions according to Eq. (5). After training, a single RL agent is able
to find a suitable encoding for any state |ψ⟩ of choice. b. Example of a training trajectory for [[7, 1, 3]]
code discovery. Here, 16 parallel agents each interact with batches of 32 circuits processed in parallel.
Each agent finds a different encoding circuit, and the training finishes in 16 sec on a single GPU.
c. Example of how the generators change upon applying gates. Here the [[7, 1, 3]] bare code [4] is
rediscovered. d. Example of code discovery in an ion-trap-like platform, where the native 2-qubit
gate is the Mølmer–Sørensen gate.

are extremely fast. Thanks to the Gottesman-Knill theorem, the Clifford circuits needed here can
be simulated efficiently classically [16, 17]. Optimized numerical implementations exist, e.g. STIM
[18]. However, in an RL application we want to be able to run multiple agents in parallel in an
efficient, vectorized way that is compatible with modern machine learning frameworks. For that
reason, we have implemented our own special-purpose vectorized Clifford simulator. Briefly, we
use the symplectic binary formalism of the Pauli group [17] to represent the stabilizer generators.
SC is then represented by a check matrix H [17], which is a (n − k) × 2n binary matrix where
each row i represents the Pauli string gi from SC . Clifford gates are also implemented using binary
matrices. Second, we achieve a massive speedup of the training process by running simulations of
quantum circuits in parallel, meaning that the agent interacts with a batch of RL environments at
every timestep. Finally, we also train multiple RL agents in parallel on a single GPU. This is achieved
by interfacing with PUREJAXRL [19], a library that offers a high-performance end-to-end JAX [20]
RL implementation. Our code is written in PYTHON and is ran on a single NVIDIA Quadro RTX
6000 GPU.

In the following we fix the error model to be a symmetric depolarizing channel of weight d− 1 and
we vary d from 3 to 5. The gateset is {Hi,CNOT(i < j)}, but others can be considered, see Fig.1(d).
To show the efficiency of our implementation, we first display an example of a training trajectory in
Fig.1b. There, 16 agents are tasked to find [[7, 1, 3]] codes, which each of them completes successfully
running in parallel in 16 sec on a single GPU. The average circuit size starts being 25 by design, i.e.
if no code has been found after 25 gates, the circuit gets reinitialized. This number starts decreasing
when codes start being found and it saturates to a final value, which is in general different for each
agent. The noticeable variance in the circuit sizes that are found in Fig.1b is a testament that different
codes (in the sense of possibly belonging to different code families) with the same code parameters
[[7, 1, 3]] may have been found, yet making such a distinction requires further postprocessing.

The main results are summarized in Fig.2, where we show a classification of stabilizer codes with
many different parameters [[n, k, d]]. The circuit size shown for each [[n, k, d]] in Fig. 2 is the minimal
one found across all discovered families. In general, different families have different circuit sizes,

4



(1,0)

(0,1)

(3,7) (25,143)(10,26)

(1,0)
(12,0)

(1,0)(13,0)

(11,2)
(102,105)

(328,68)

(142,2)

Ci
rc

ui
t s

ize

Number of physical qubits

(6,1)
(32,57) (56,486)Out[ ]=

● ● ● ● ●
■ ■ ■
◆ ◆ ◆

▲ ▲

▼ ▼

○○

4 6 8 10 12 14 16
0

10

20

30

40

n

L

● k=1 ■ k=2 ◆ k=3 ▲ k=5 ▼ k=7 ○ k=9

incl. Steane incl. Shor

Smallest quantum 
Hamming code

Perfect  
code

(1,0)

(2,2)

(22,0)
(14,0)

(1,0)

Ci
rc

ui
t s

ize

Number of physical qubits

Out[ ]=
●

●

●
●

■■

10 11 12 13 14 15 16
25
30
35
40
45
50

n

L

(7,5)
(26,167)Ci

rc
ui

t s
ize

Number of physical qubits

(77,239)

(1,0) (16,5) (117,181)

(31,0)
(234,56)

Out[ ]= ●
●

●

■ ■ ■

◆
◆

9 10 11 12 13 14
10
15
20
25
30
35
40

n

L

d=3 d=4 d=5

Out[ ]=

● ● ● ● ●
■ ■ ■
◆ ◆ ◆

▲ ▲

▼ ▼

○○

4 6 8 10 12 14 16
0

10

20

30

40

n

L

● k=1 ■ k=2 ◆ k=3 ▲ k=5 ▼ k=7 ○ k=9Number of logical qubits:

Figure 2: Discovering codes and encoding circuits for various numbers of physical qubits, logical
qubits, and distances. Selection of families of stabilizer codes tailored to symmetric depolarizing noise
channels, found with our RL framework. The labels (x, y) indicate the number of non-degenerate (x)
and degenerate (y) code families. The circuit size shown is the absolute minimum throughout all
families, and different families in general have different minimal circuit sizes. Since further d = 3, 4
training runs do not increase family populations, it is likely that there are no more stabilizer codes for
the shown [[n, k, d = 3, 4]]. Codes [[n, k = 4, 6, 8, d = 3]] are also found but not shown to keep the
figure uncluttered. For the computationally harder case of d = 5 we display the results found in a
finite allotted time.

and even within the same family we find variations in circuit sizes. This approach discovers suitable
encoding circuits, given the assumed gate set, for a large set of codes. Among them are the following
known codes for d = 3: The first one is the five-qubit perfect code [21], which consists of a single
non-degenerate [[5, 1, 3]] code family and is the smallest stabilizer code that corrects an arbitrary
single-qubit error. Next are the 10 families [22] of [[7, 1, 3]] codes (see Fig. 1c for an example), one of
which corresponds to Steane’s code [23]. The smallest single-error-correcting surface code, Shor’s
code [24], is rediscovered as one of the 143 degenerate code families with parameters [[9, 1, 3]]. The
smallest quantum Hamming code [25] [[8, 3, 3]] is obtained as well. Our approach is efficient enough
to reach up to 15 physical qubits, discovering codes in less than 20 minutes. Extending to more
physical qubits is certainly doable.

Distance-5 codes are more challenging to find due to the many more error operators (6) to be kept
track of. Nevertheless, we find codes with the smallest known parameters [[11, 1, 5]], and as large as
[[15, 2, 5]]. For instance, each of these training runs needs 1-4 hours, depending on the code parameters
and whether degenerate codes are also targeted. Nevertheless, future performance improvements are
likely possible.

5 Outlook

We have presented an RL framework that is able to discover QEC codes and their encoding circuits
from scratch, for a given gate set and error model. Our approach is very general, and we are able
to scale up to d = 5 codes without much effort. Larger code distances are challenging due to the
exponential number of errors to be kept track of, (6), which imposes a memory bottleneck. However,
d ≤ 7 fit in present-day GPUs. Moreover, agent reuse in a transfer-learning setup could alleviate this
bottleneck.

As a comment, it is worth noting that our encoding circuits are not fault tolerant. We have assumed
that gates are perfect, but gates are in general faulty and errors propagate through the circuit, often
becoming incorrigible. However, flag fault tolerance [26] on top of our encoding circuits could turn
these encodings fault tolerant, which is a task that is also suitable for an RL implementation. In
any case, our methods could find direct application in quantum communication setups, where errors
mostly occur while sending data, and not in the encoding part.

Ongoing extensions of this work include designing a more general noise-aware RL agent that is
capable of finding codes in many different noise channels at once. This would be valuable already
in near-term quantum devices, where phase flips are dominant with respect to bit flips [27]. Here, a
single agent would be able to switch its encoding strategy for a range of noise models, thus leveraging
transfer of insights between different situations.
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