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Abstract

Quantum error correction (QEC) is important for the realization of fault-tolerant
quantum computers. The first essential step of QEC is to encode the logical state
into physical qubits. However, there is no unique recipe for finding a quantum
circuit that encodes or prepares the logical state, especially for a given gate set
and qubit connectivity. In this work, we use deep reinforcement learning to
automatically discover quantum circuits to prepare the logical state of a QEC code
given a gate set and qubit connectivity. We show that our method can prepare a
logical state of up to 17 physical qubits code in fully connected qubits and up to
15 physical qubits code with IBM quantum devices gate set and connectivity with
smaller circuit size than other methods.

1 Introduction

One of the key aspects in realizing large-scale fault-tolerant quantum computers is quantum error
correction (QEC) [17]. The basic idea of QEC is to protect quantum information by encoding k
logical qubits into n > k noisy physical qubits in such a way that we can detect and correct errors
without destroying the logical state |ψ⟩L. A QEC code determines how to encode and decode |ψ⟩L
and how to detect and correct errors. Once a code is chosen, the next step is to find a unitary U ,
represented as a quantum circuit, that prepares |ψ⟩L of that code. Finding U is not trivial, especially
with a given set of gates and qubit connectivity. The problem is often referred to in the literature as
the compilation problem [13], and it is of great relevance in current noisy intermediate scale quantum
(NISQ) devices where the gate set and qubit connectivity are restricted.

We focus on a special type of QEC code called the stabilizer code [9]. In this case, we can restrict
U to a circuit that uses only Clifford gates (e.g., Hadamard H , phase S, and controlled not CNOT).
The preparation of a state with a Clifford circuit has been studied extensively [2, 3, 7, 16]. Similar
to our work, Xu et al. [23] used a parameterized circuit to compile |ψ⟩L of codes with n = 5 and
7. However, in a parameterized circuit, one needs to provide a circuit ansatz, and the optimization
process generally does not scale well because of the barren plateaus [14]. Therefore, there is still
a need for a scalable compilation tool that discovers circuits and works autonomously without an
ansatz.

Recently, machine learning, and in particular reinforcement learning (RL) [22], has proven to be a
useful tool for solving various problems in quantum technologies [10]. In RL, an agent is trained to
discover a policy (optimal set of actions) in an environment by maximizing cumulative rewards. In
this paper, we propose to use RL to automatically discover quantum circuits that prepare a logical
state |ψ⟩L of a given QEC code, gate set, and qubit connectivity, as shown in Figure 1a. In our
methods, we use discrete Clifford gates, which means that, compared to [23], our approach does
not require an ansatz. RL has also been used for the preparation of random states of only up to 2
qubits [8, 15, 24] but not in the stabilizer domain. We show that RL can prepare |ψ⟩L of up to n = 17
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Figure 1: Overview of the preparation of logical states with reinforcement learning (RL). (a) The RL
agent takes as input the target logical state |ψ⟩L of a [[n, k, d]] code, a Clifford gate set, and the qubit
connectivity, and outputs a circuit U that prepares |ψ⟩L. (b) The RL framework in this paper. The RL
environment is the circuit represented by the stabilizer tableau of the circuit’s state and is observed by
the RL agent. At each step, the agent applies a Clifford gate and receives a reward.

in fully connected qubits and up to n = 15 on IBM quantum device connectivity and gate set with
smaller circuit sizes than other methods.

Background. In the following, we give a brief background on the stabilizer formalism. A QEC code
that encodes k logical qubits into n physical qubits is commonly denoted as [[n, k, d]], where d is
the code distance, meaning that it can detect (correct) errors up to weight d− 1 (⌊d/2⌋). We focus
specifically on the stabilizer codes [9]. The main idea of the stabilizer formalism is to represent a
state |ψ⟩ as a set of Pauli operators O that stabilize the state O|ψ⟩ = |ψ⟩.
The set of stabilizers S is a subset of the Pauli group of n qubits such that all elements of S commute
with each other and −I /∈ S. S can be written by specifying its set of generators, S = ⟨g1, . . . , gn−k⟩,
meaning that states in the code space are stabilized by any element of S. Within the code space, each
code word can be transformed into one another using the logical operators Zi

L and Xi
L commute with

S and where i = 1, ..., k. For example, if k = 1, then Z1
L|0⟩L = |0⟩L and X1

L|0⟩L = |1⟩L, so the
choice of logical operators determines the logical state |0⟩L and |1⟩L.

We are concerned only with Clifford circuits, where the state |ψ⟩ = U |0 . . . 0⟩ is always determined
by the stabilizer canonical tableau [2]. In particular, the tableau of a logical state is fixed to contain
the n − k stabilizer generators and the k logical operators. A tableau can be represented as a
n× (2n+ 1) matrix of binary variables xij , zij , ri for i, j ∈ {1, . . . , n}. Each row i of the tableau
[xi1, . . . xin, zi1, . . . , zin, ri] represents the Pauli string of the generators or logical operators, where
xijzij bits determine the j-th Pauli matrix, where 00, 01, 10, and 11 denote I , Z, X , and Y Pauli,
respectively, and ri denotes its sign (1 for negative and 0 for positive). The canonical tableau is
obtained by applying Gaussian elimination to the tableau [2].

2 Reinforcement learning approach for logical state preparation

The goal of logical state preparation is to find a circuit U that prepares the target stabilizer state (as
shown in Figure 1a). The input is the canonical tableau of the target logical state starget, which
consists of n− k generators and k logical operators. Additionally, it takes as input the Clifford gate
set and the qubit connectivity. Note that although in this work we focus on preparing a logical state
|ψ⟩L of a stabilizer code, our approach is general enough that it can be used to prepare arbitrary
stabilizer states.

The RL framework is shown in Figure 1b. The environment of RL is the quantum circuit. We
assume that all qubits in the circuit are initialized in the state |0⟩. To represent the environment,
one could use the state vector of size 2n, as in [15, 24]. However, this representation is sparse and
scales exponentially with n. Since we are focusing on stabilizer codes, we will instead use the
current canonical stabilizer tableau of the circuit [2] to represent the state of the environment. This
representation is denser and scales quadratically with n. This representation serves as input to the
neural networks.

Based on the input, the RL agent needs to choose and apply an action. The action that the agent
takes is to apply discrete Clifford gates to the circuit, which is determined by the given gate set and
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qubit connectivity. Suppose we choose a gate set consisting of G1 one-qubit gates and G2 two-qubit
gates with fully connected qubits. At each step, the agent must decide over nG1 + (n2 − n)G2

possible actions. Assuming that the circuit has L gates, then the space of possible solutions grows
exponentially as LnG1+(n2−n)G2 , making search algorithms infeasible. After applying an action, the
agent gets a reward that we will discuss next.

The training of the RL agent consists of updating the neural network parameters to maximize the
cumulative reward. Therefore, designing a good reward function is an important aspect of training
the RL agent. One could choose to reward based on state fidelity used in [15, 24] or to use the
energy cost function used in [23]. However, we find that these reward functions rarely produce a
useful reward signal (sparse reward problem [22]). Instead, we propose a new reward scheme based
on the binary distance d(st, starget) between the current canonical tableau of the circuit st and the
target state starget. Furthermore, we also use the reward shaping technique [22] by giving small
intermediate rewards at each step. Thus, at each time step, we give the difference between the distance
of the previous time step to the current time step (since we want to maximize the cumulative reward),
which is formally given as d(st−1, starget)− d(st, starget).

3 Results

We divide the discussion of the results into two parts. First, we use fully connected qubits with H ,
S, and CNOT gates, which we will refer to as the standard gate set. Then, we show that RL can
adapt to the qubit connectivity and gate sets of realistic NISQ hardware platforms. In this work,
we choose to focus on IBM quantum devices. As an evaluation metric, we measure the circuit size,
which corresponds to the number of gates in the circuit. The smaller the circuit size, the better.

We use PUREJAXRL library [12] for the implementation of the RL with Proximal Policy Optimization
(PPO) algorithm [19], which is written in PYTHON with JAX [6] library to allow parallel training on
Graphics Processing Units (GPU). This library allows us to rapidly train multiple agents in parallel.
All experimental results shown below were performed on a single NVIDIA Quadro RTX 6000 GPU.
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Figure 2: Results of RL-prepared logical state. (a) Circuit size of different logical state preparation
methods for different QEC codes with fully connected qubits and H , S, and CNOT gates. (b)
Comparison of circuit size between RL agent that incorporates the connectivity and gate set during
training (RL Direct) compared to a RL-prepared circuit for fully connected qubits followed by
QISKIT transpilation [1] (RL + Transpile) of different logical state preparation methods on IBM
quantum devices qubit connectivity and gate set. (c) shows an example of the RL training progress
for preparing |0⟩L state of [[7, 1, 3]] code. (d) and (e) show two examples of RL-prepared circuits
for preparing |0⟩L state of [[5, 1, 3]] code in IBMQ Manila connectivity and [[7, 1, 3]] code in IBMQ
Jakarta connectivity, respectively. Since H is not in the gate set, the agent learns a new gate sequence√
X,CNOT, S (in yellow) that is equivalent to H gate followed by CNOT.
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State preparation on fully-connected qubits with standard gate set. We prepare the zero logical
|0⟩L state of the [[5, 1, 3]] perfect code [11], |0⟩L of [[7, 1, 3]] Steane code [21], plus logical |+⟩L of
[[9, 1, 3]] Shor code [20], |0⟩L of [[15, 1, 3]] quantum Reed-Muller code or 3D color code [4], and
|0⟩L of [[17, 1, 5]] 2D color code [5]. We choose the logical operators to be Z⊗n, where n is the
number of physical qubits.

We compare the RL method with four different Clifford circuit synthesis methods. Two of them are
available in the QISKIT [18] library, which is based on the algorithm provided by Bravyi et al. [7]
and Aaronson-Gottesman (A-G) [2]. We also compare with StabGraph [3] which works only for a
specific type of codes called Calderbank-Shor-Steane (CSS) codes by converting it into a graph state
and QMAP [16], which converts the problem into a boolean satisfiability problem (SAT) and solves
it with SAT solver.

Figure 2a shows the comparison of the circuit size for the logical state preparation between different
methods. We see that proposed RL method prepares a smaller circuit size compared to other methods.
StabGraph [3] is specialized in preparing the logical state of a CSS code, therefore it does not work
for preparing the |0⟩L state of the [[5, 1, 3]] code. QMAP [16] could not prepare the |0⟩L state of the
[[15, 1, 3]] and [[17, 1, 3]] code within the specified time of 24 hours. In terms of efficiency, training
the RL agent takes about 1.8 minutes, 1.6 minutes, 2 minutes, 50 minutes, and 1.4 hours for the
state preparation of [[5, 1, 3]], [[7, 1, 3]], [[9, 1, 3]], [[15, 1, 3]], and [[17, 1, 5]] code, respectively, while
Bravyi et al. [7] and A-G [2] can prepare the circuits in under 5 seconds. Even though RL is slower
than other algorithms, we argue that the discovery of a state preparation circuit only needs to be done
once so the time scales are completely acceptable and the resulting circuit size is lower.

Figure 2c shows how the average return and the average circuit size evolve during training for the |0⟩L
state preparation of [[7, 1, 3]] code. The agent already converges after seeing roughly 300 episodes
and just improves the average circuit size afterward. The whole training for this plot took 100 seconds
and output 10 circuits in parallel.

State preparation on a specific hardware. In the previous result, state preparation was done on
fully connected qubits with the standard gate set. However, this connectivity and gate set may not
be realistic for current NISQ hardware. The usual procedure is to use the transpiler routine [1] after
the state preparation to respect the connectivity and gate set. Here we show the robustness of RL,
which can take as input the connectivity and native gate set of a specific NISQ hardware. Thus, RL
streamlines the state preparation and transpilation routine into a single process.

In the following, we will focus on IBM quantum devices. The native gate set for IBM quantum
devices includes the gates CNOT, X ,

√
X , and RZ , which is a parameterized rotation gate along the

z axis. We choose a subset of CNOT, X ,
√
X , and S = RZ(π/2) gate as input to the RL agent.

We prepare the |0⟩L state of the [[5, 1, 3]] perfect code [11] with connectivity from IBMQ Manila,
|0⟩L of [[7, 1, 3]] Steane code [21] with connectivity from IBMQ Jakarta, |+⟩L of [[9, 1, 3]] Shor
code [20] with connectivity from some part of IBMQ Guadalupe, |0⟩L of [[15, 1, 3]] quantum Reed-
Muller code or 3D color code [4] with connectivity from some part of IBMQ Tokyo. We choose the
logical operators to be Z⊗n, where n is the number of physical qubits. The placement of the qubits is
randomized.

We refer to the RL method that directly incorporates the gate set and connectivity constraint into
the training as RL Direct. We compare this with taking the RL prepared circuit for fully connected
qubits with the lowest circuit size and apply the QISKIT transpilation routine with the maximum
optimization level, which we refer to as RL + Transpile.

Figure 2b shows the comparison of the state preparation on IBM quantum devices with RL Direct
and with RL + Transpile. We see that RL direct produces circuits with smaller circuit sizes compared
to RL + Transpile.

Examples of a circuit prepared by the RL agent for [[5, 1, 3]] in the IBMQ Manila device and [[7, 1, 3]]
in the IBMQ Jakarta device are shown in Figure 2d and e, respectively. We observe that the RL agent
qualitatively learns an interesting strategy. For example, in Figure 2e, the agent learns and reuses
a new gate sequence (

√
X,CNOT, S, shown with yellow background). This sequence of gate is

equivalent to H gate followed by CNOT since H gate is not a part of the IBM quantum device gate
set. In other cases, the agent also invents or learns gates such as the SWAP gate to reroute the qubit
or the H gate without being explicitly programmed.
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4 Conclusion

In this work, we have shown how RL can be used to automatically discover quantum circuits to prepare
logical states of a given QEC code with a given gate set and qubit connectivity. Our experimental
results show that the RL method can prepare logical states of up to 17 qubits with smaller circuit
sizes compared to other methods. We also showed the capability of the RL method to prepare logical
states on IBM quantum devices gate set and qubit connectivity of up to 15 qubits.

We have not considered the errors that may occur during the preparation of the logical state. The
ongoing extension of this work is to discover a quantum circuit that prepares a logical state in a
fault-tolerant manner.
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