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Abstract

Liquid argon time projection chambers (LArTPCs) are widely used in particle
detection for their tracking and calorimetric capabilities. The particle physics
community actively builds and improves high-quality simulators for such detectors
in order to develop physics analyses in a realistic setting. The fidelity of these
simulators relative to real, measured data is limited by the modeling of the physical
detectors used for data collection. This modeling can be improved by performing
dedicated calibration measurements. Conventional approaches calibrate individual
detector parameters or processes one at a time. However, the impact of detector
processes is entangled, making this a poor description of the underlying physics.
We introduce a differentiable simulator that enables a gradient-based optimization,
allowing for the first time a simultaneous calibration of all detector parameters.
We describe the procedure of making a differentiable simulator, highlighting the
challenges of retaining the physics quality of the standard, non-differentiable
version while providing meaningful gradient information. We further discuss the
advantages and drawbacks of using our differentiable simulator for calibration.
Finally, we discuss extensions to our approach, including applications of the
differentiable simulator to physics analysis pipelines.

This short paper summarizes a work from many people described in more detail in arXiv:2309.04639.

1 Introduction

High-quality simulations of physics detectors are a fundamental piece of infrastructure across a
diverse set of scientific disciplines. In high-energy particle physics measurements, detector simulation
is particularly crucial to the analysis and reconstruction of an event. To avoid bias in physics
results, dedicated calibrations are required to match simulation and real data. In particle physics, a
conventional approach for identifying sources of data-simulation difference is to isolate different
detector modeling processes using selected control samples. However, this approach does not capture
the interplay among entangled detector processes [1–7]. A simultaneous correction of all detector
processes and physics models would be an ideal new paradigm for detector calibration.

Gradient-based optimization provides a pathway towards improving calibration. Gradient-based
methods are powerful and efficient in high dimensional optimization, supporting a simultaneous fitting
of arbitrarily many parameters. Equipping existing detector simulations with gradient information
enables the use of gradient-based optimization for calibration, while allowing for trivial application of
this calibration directly in the simulation code. The exact calculation of these gradients can be done
using a set of techniques called automatic differentiation [8]. In automatic differentiation, computer
code is decomposed into a set of fundamental operations with known derivatives. Derivatives of
the full program may then be calculated using these fundamental operations and the chain rule. A
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Figure 1: Flow diagram of the simulator,
highlighting inputs and outputs of each stage
(blue) as well as commonly calibrated model
parameters (red).
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Figure 2: For each 6-parameter fit, the conver-
gence level is defined as the maximum rela-
tive distance to the corresponding target value
across all the parameters. The red line shows
the average convergence level per iteration
across the 10 fits. The band boundaries repre-
sent the minimum and maximum convergence
level per iteration across all of the fits – all 10
convergence levels fall within the band.

variety of software packages, such as PyTorch [9], TensorFlow [10], and JAX [11], are capable of
performing this calculation.

We demonstrate the utility of gradient-based optimization for a detector calibration task, using a
liquid argon time projection chamber (LArTPC) detector as a case study. LArTPCs are used in a
variety of modern particle physics experiments, such as the DUNE experiment, which is currently
under construction [12]. Given the significant community and governmental investment in such large
experiments, there is high interest and big efforts behind having a high-quality LArTPC simulation,
and a significant potential impact in improving the corresponding calibration pipeline.

2 Simulator implementation

A LArTPC is a detector with an applied electric field across a volume of liquid argon. Deposition of
energy can cause ionization in the liquid argon, and the ionization electrons drift under the influence
of the electric field to be measured as current in an electronics readout. Our simulator uses a detector
configuration corresponding to a module design for a DUNE LArTPC prototype.

The simulator developed for the DUNE LArTPC prototype is called larnd-sim [13]. Energy
depositions are represented as line segments (“particle segments”) defined by 3D start and end
positions, and an associated energy. The simulator models the production of ionization electrons due
to these energy depositions, as well as the drifting of electrons to the pixel readout at each anode plane.
A current in the pixel readout can be induced by charges approaching or being directly collected on a
given pixel. Each pixel is an independent readout channel with its own setup for trigger threshold and
gain. Currents in the pixel readout are digitized to analog-to-digital converter (ADC) counts before
being read out. The location of induced current in the pixel plane provides an x, y measurement.
Timing information provides information on z. The magnitude of the induced current (ADC counts)
gives information on deposited energy. A schematic view of this simulator is presented in Fig. 1.

We have rewritten larnd-sim to use differentiable, vectorized operations within PyTorch. To
ensure the differentiability of all operations, we have introduced a set of differentiable relaxations:
continuous, often smooth approximations of non-differentiable or poorly conditioned operations.
Two scenarios of particular relevance for this work that require such relaxations are discrete integer
operations and hard masking operations. All the truncations from floating point values to integers are
removed, while all the masking operations are softened using a sigmoid function.

2



The simulated output using all of these relaxations was compared with a reference simulation from a
snapshot of larnd-sim. Both simulators produced very similar results, with an average deviation of
0.04 ADC counts per activated pixel, which is two orders of magnitude below the typical noise level.

3 Parameter fitting

In the following, we apply the differentiable simulator described above to the calibration task. In our
context, this means tuning the parameters of our simulator to match some given dataset, which can be
either simulated or from a real experimental setup. Let f(χ, θ) represent our differentiable simulator,
with input particle segments χ and parameters θ. Our focus is to optimize the parameters θ.

For the optimization of θ, we propose an “analysis-by-synthesis” approach:

1. Choose initial values for the parameters, denoted as θ0;

2. Run the forward simulation with these parameters, f(χ, θ0);

3. Compare the simulation output with target data Ftarget, using a loss function,
L(f(χ, θ0), Ftarget);

4. Update parameter values θ0 → θi to minimize the loss, and repeat from step 2 starting
from parameters θi and forward simulation f(χ, θi). The differentiable simulator enables a
gradient-based update rule for θi.

To demonstrate the capability of our differentiable simulator in optimizing model parameters, we
focus on a controlled case where Ftarget is generated using our simulator. Simulated targets Ftarget are
constructed as f(χ, θtarget), where particle segments χ are known and may be used directly in the fit.
Similarly, θtarget are known parameter values producing Ftarget. Successful fits recover fitted values
θ = θtarget. This procedure is therefore known as a closure test.

The output of the simulation is the charge q, in ADC counts, read out on relevant pixels of coordinates
x and y at time t. Pixel coordinates and readout times are discrete. We use a dynamic time warping
discrepancy (DTW) [14] as a loss function. It was designed for time series analysis and can easily
deal with misaligned data series, which is crucial for our application, where we try to match sparse
outputs. The inputs to the DTW loss function are sequences of ADC counts, hierarchically ordered
by the corresponding values of x, y, and z. Dynamic time warping is not nicely differentiable by
default. We therefore employ Soft-DTW [15], a smoothed version of DTW, using the implementation
from Ref. [16, 17].

For this demonstration, we fit 6 parameters using our differentiable simulator: the Birks model
parameters AB , kB ; electric field E ; lifetime τ ; and longitudinal and transverse diffusion coefficients
DL and DT . To mimic a muon control sample that is typically used for LArTPC calibration, we
simulate 100 events with about 10 muons per event. Muon injection angles are sampled randomly
from an isotropic distribution while their energy is set to 1GeV.

4 Results and outlook

To select parameter targets, we draw a uniform random value for each parameter from ranges
determined by values measured in previous experiments. Each target then corresponds to a single point
sampled uniformly from the considered 6D phase space. This setup mimics a realistic experimental
procedure, as our best initial guess for each parameter is based on previous measurements.

In Fig. 3, we show closure-test results for fits to 10 different parameter targets using the muon sample
described above. Each fit is labeled by a different color, and the convergence of the 6D simultaneous
fit for each parameter is shown in a separate panel. The targets cover a wide range of phase space.
All fits converge well to their corresponding targets. Fig. 2 shows a combined convergence metric
across all 6 parameters, with the distribution calculated across the same 10 fits as in Fig. 3. For each
fit, the convergence level is defined as the maximum over all parameters of the relative distance of
each parameter to its corresponding target value. The band shows the maximum and the minimum
relative distances to the targets among the 10 fits. All fits converge to within 1 % of their target values
after 5000 iterations.
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Figure 3: Results from a simultaneous fit of six detector model parameters: AB , kB , E , τ , DT , DL

using the default muon sample. Each color indicates a sampled 6D target parameter point, and all fits
start from the same initial parameter values, mimicking a realistic fitting scenario. The dashed lines
label the target values of each parameter for each respective fit. The solid lines show the evolution of
fitted parameter values with respect to the iteration number in the fit.

The results above demonstrate that a robust calibration can be performed in a multi-dimensional
phase space using gradient-based optimization. This novel technique enables us to simultaneously
optimize a set of model parameters across the detector simulation. In addition, the number of particles
required for this calibration would have a negligible impact on data-taking and could be collected in a
very short amount of time. This would allow for frequent verification of the calibration. Furthermore,
this procedure is extensible to larger or different sets of parameters, making it suitable for generic use.
The optimized model parameters can be immediately applied within the same simulation used for
calibration. This benefits experiments by automatically ensuring consistent application across the
simulation and analysis chain.

The presented calibration results are simulation closure tests. With real data, we will have to estimate
the particle segments event by event. For track-like particle samples, such as muons, pions, and
protons, this can be done by fitting the readout hits with lines and breaking those lines into segments.
We will then need to reconstruct dE

dx using the charge readout and the reconstructed segment length.
However, this reconstruction has some dependence on detector parameters and will likely require
iterative updates of dE

dx alongside the parameter optimization fit.

The calibration tests presented here are also a test of the validity of parameter gradients through our
simulator. This work therefore further sets the stage for the use of differentiable detector simulation
within a broader machine learning context, allowing for e.g. explicit feedback of detector simulation
on neural network training, a rich area with many applications, including learning to remove detector
effects.

In summary, our work is a first step towards a broader differentiable physics program in particle
physics. This differentiable physics program has the potential for a significant impact on the way
physics analysis is performed, and there is a broad set of interesting future tasks towards integrating
differentiable toolkits within particle physics to expand analysis capability and improve the quality
and output of new physics results.
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