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Abstract

Generative learning is an important task in classical machine learning with several
models including generative adversarial networks (GANs) and variational autoen-
coders (VAEs) which are popular. In quantum machine learning an important task
in this setting is that of modeling the distributions obtained by measuring quantum
mechanical systems. Classical generative algorithms, including GANs and VAEs,
can model the distributions of product states with high fidelity, but fail or require
an exponential number of parameters to model entangled states. In this paper,
we introduce a quantum-enhanced VAE (QeVAE), a generative quantum-classical
hybrid model that uses quantum correlations to improve the fidelity over classical
VAEs, while requiring only a linear number of parameters. We provide a closed
form expression for the output distributions of the QeVAE. We also empirically
show that the QeVAE outperforms classical models on several classes of quantum
states, such as 4-qubit and 8-qubit quantum circuit states, haar random states, and
quantum kicked rotor states, with a more than 2x increase in fidelity for some
states. Finally, we find that the trained model outperforms the classical model
when executed on the IBMq Manila quantum computer. As an application we show
that our techniques can be also used for the task of circuit compilation. Our work
paves the way for new applications of quantum generative learning algorithms and
characterizing measurement distributions of high-dimensional quantum states.

1 Introduction

Research in quantum information science promises to enable the development of a fault-tolerant
quantum computer that can perform certain tasks faster and more efficiently than any classical
computer. To this end, several scientists have demonstrated that quantum algorithms can, in theory,
outperform the best-known conventional algorithms when tackling specific problems and, in some
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situations, deliver a ‘quantum speedup’ [1, 2]. For instance, certain quantum algorithms can take
exponentially fewer resources for tasks such as factorization and eigenvalue decomposition, and
quadratically fewer resources to search through unsorted databases [4,5,12]. This pursuit of ‘quantum
speedup’ has motivated generations of physicists and engineers to discover novel algorithms that
leverage the properties of superposition, entanglement and interference.

In this paper, we study the problem of modeling the measurement distributions obtained from
unknown quantum states. This problem is fundamental in quantum information science, as it can
reveal useful information about the properties and dynamics of quantum systems. Moreover, it can
enable applications such as quantum state reconstruction, and entanglement quantification [3,6,7,10].
These applications can help us understand and manipulate quantum systems in various fields, such as
chemistry, materials science, and cybersecurity.

In this paper, we make four main contributions to the field of quantum generative learning.

1. We propose the Quantum-enhanced VAE (QeVAE), which can enhance the expressive power
of classical VAEs and produce distributions that are classically intractable.

2. We provide a mathematical closed-form expression to theoretically analyze the class of
models that QeVAE can model.

3. We demonstrate experimentally that our QeVAE outperforms classical VAEs on modeling
measurement samples of different classes of quantum states, such as haar random states,
quantum circuit states, and quantum kicked rotor states, and report an increase in fidelity by
more than 2x for an 8-qubit quantum circuit state.

4. We show how to use our algorithm for the task of circuit compilation as well.

Our work is organized as follows: In Section 2, we discuss the background work on generative
learning, variational autoencoders, and the problem of learning measurement distributions of quantum
states. In Section 3, we propose the QeVAE and mathematically characterize the output distribution
of the model. We describe our experiments and results in section 4. Finally, in Section 5, we discuss
our conclusions and future outlook in the greater context of developing quantum algorithms for
generative learning.

2 Background and Related work

2.1 Generative learning and Variational Auto Encoders

The task of generative modeling involves modeling a parameterized distribution pθ(x), given inde-
pendent and identically distributed (iid) samples from the distribution {xi}mi=1 where each xi ∼ p(x).
Here the goal is to maximize the log likelihood of the data given by L(θ) =

∑
i log pθ(xi).

Variational learning involves modeling the distribution through a latent vector z. One can define a
prior on the latent variables z ∼ p(z) and a parameterized likelihood function pθ(x|z). The joint
distribution over the variables x and z can then be written as p(x, z) = p(z)pθ(x|z).
Variational Autoencoders [9] seek to maximize the ELBO defined by ELBO = Eq(z|x) (log p(x|z))−
KL(q(z|x)||p(z))). The algorithm involves using the posterior network (encoder) to create the
distribution qϕ(z|x) and provides samples z, which are then passed through the likelihood network
(decoder) to produce a distribution over x conditioned on sampled vector z. One then seeks to
maximize the difference of log likelihood of generated distribution p(x|z) and the KL divergence
between posterior (q(z|x)) and prior distributions p(z). The first term (reconstruction term) tries
to maximize the likelihood of recovering back x from the latent variable. The second term is a
regularization term that tries to ensure that posterior distribution is close to prior.

2.2 Quantum computation and quantum machine learning

Quantum computing is a model of computation with a potential to provide a speedup over its classical
counterpart. The fundamental units in quantum computing framework consist of quantum bits or
qubits. An n qubit state lies in a Hilbert space spanned by basis states corresponding to 2n classical
bit strings, |0...0⟩ through |1...1⟩. An arbitrary state can be a unit vector spanned by the 2n basis
strings as |ψ⟩ =

∑
x∈{0,1}n αx |x⟩, where

∑
x |αx|2 = 1. The basic operations on qubits include
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quantum gates, which are unitary operators acting on one or more qubits. Common examples of
single qubits gates include the Hadamard, Pauli Gates(X,Y,Z), and S gate. The exponentiated Pauli
Gates also provide us a set of parameterized gates, Rx(θ) = exp(−i θ2X) , Ry(θ) = exp(−i θ2Y ) and
Rz(θ) = exp(−i θ2Z). A common 2 qubit gate is CNOT which acts as CNOT |x, y⟩ = |x, x⊕ y⟩
on basis states. A quantum circuit consists of a sequence of single qubit and two-qubit gates acting
on an initial state (typically |0...0⟩) followed by measurement of the final state. A measurement of a
state |ψ⟩ =

∑
x αx |x⟩ yields one of the bit strings x with probabilities |αx|2.

A parameterized quantum circuit (PQC) is a quantum circuit that has some gates that depend on
parameters θ. The unitary operator of the PQC is denoted by Û(θ), which can produce a state
|ψ(θ)⟩ = Û(θ) |0⟩⊗n. The PQC can also be conditioned on an input x as Û(x, θ). This can be
decomposed into a feature map Ûϕ(x) and a trainable ansatz V̂ (θ). The feature map is a data encoding
circuit that transforms input data x̄ ∈ Rn into a quantum state using single qubit and two qubit gates,
potentially parameterized by the input variables. The ansatz is a parameterized circuit that consists of
alternating rotation layers and entanglement layers. The rotation layers are single-qubit gates applied
on all qubits. The entanglement layer uses two-qubit gates to entangle the qubits according to a
predefined scheme. The parameters of the PQC can be optimized to achieve a certain goal, such as
minimizing the energy of a quantum system or maximizing the accuracy of a machine learning task.
The parameters can be updated iteratively using classical optimization methods such as gradient-based
(ADAM), [8], SPSA [13]) or gradient-free (COBYLA) algorithms. The measurement distribution
of |ψ(x, θ)⟩ = Û(x, θ) |0⟩ in Z-basis defines the conditional distribution p(y|x) = | ⟨y|ψ(x, θ)⟩ |2
∀y ∈ {0, 1}n.

3 Quantum-enhanced Variational Autoencoders

In this section, we define a quantum-enhanced variational autoencoder (QeVAE) to model the
measurement distribution of an unknown n-qubit quantum state. As a baseline, classical VAEs have
already been used to model such a distribution [11]. The hybrid model that we propose consists
of a feedforward classical encoder, a continuous latent space, and a parametrized quantum circuit
as a decoder. We model the approximate posterior (encoder network) Qϕ(z|x) through a classical
feedforward neural network and the latent variable as z ∼ N (0, I). The likelihood (generator)
distribution pθ(x|z) is defined via a quantum circuit i.e. pθ(x|z) = | ⟨x|Û(θ, z)|0⟩⊗n⟩ |2. Here, the
input z is encoded using Z or ZZ feature map. This is followed by 2- Local ansatz. The Evidence
Lower bound loss (ELBO) is optimized through a classical optimizer such as ADAM. The model is
trained to mimic the given measurement distribution of states. During training, the parameters of the
encoder and the rotation gates in the decoder (with a pre-selected entanglement type) are iteratively
varied and learned. It will enable scientists to generate certain quantum states in different physical
quantum computers just by knowing the set of rotation and entangling gates to perform. We now
present a theorem that allows us to mathematically characterize the class of distributions that can be
obtained via the above model(See Appendix A for proof.).

Theorem 1. Consider a latent variable model with z ∼ p(z) and p(x|z) = | ⟨x|VθUϕ(z) |0n⟩ |2,
where Uϕ(z) is a feature map and Vθ is a parameterized ansatz. Then

1. ∃ a density matrix ρ, such that p(x) = ⟨x|VθρV †
θ |x⟩. In other words the distribution of

x can be obtained by evolving a density matrix ρ under unitary ansatz Vθ followed by
measurement in standard basis.

2. Conversely, for each density matrix ρ, there exists a prior p(z) and a feature map Uϕ(z),
such that p(x) = ⟨x|VθρV †

θ |x⟩.

4 Results

We train our algorithm on multiple datasets of bits strings obtained by measuring random quantum
circuit state, haar random state and kicked rotor states (obtained by Hamiltonian evolution under
kicked rotor Hamiltonian). We compare the final fidelity between the target distribution and that
produced by a random uniform guess, a classical variational autoencoder (CVAE), and a Quantum-
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enhanced variational autoencoder (QeVAE). For each type of state, we consider five different random
seeds. QeVAE results include the best fidelity observed across different hyper-parameters.

Table 1: Fidelity for Quantum circuit states
No qubits 4 8
Seed 12 16 27 44 102 Mean ↓ 12 16 27 44 102 Mean ↓
Uniform .477 .366 .315 .154 .431 .348 .158 .279 .080 .309 .107 .187
CVAE .501 .667 .597 .925 .758 .690 .229 .423 .079 .304 .181 .243
QeVAE .981 .976 .950 .873 .912 .938 .665 .654 .388 .548 .591 .569

Table 2: Fidelity for Haar random states
No qubits 4 8
Seed 42 96 27 101 102 Mean ↓ 12 43 16 27 2 Mean ↓
Uniform .772 .776 .777 .771 .768 .773 .766 .770 .773 .781 .772 .772
CVAE .795 .798 .800 .788 .788 .794 .754 .755 .757 .766 .763 .759
QeVAE .839 .983 .913 .988 .932 .931 .876 .878 .887 .887 .887 .883

Table 3: Fidelity of Quantum-kicked rotor states
No qubits 4 8
Type Localized (k=6) Diffusive (k=0.5) Mean ↓ Localized (k=6) Diffusive (k=0.5) Mean ↓
Uniform .175 .838 .506 .053 .418 .236
CVAE .723 .908 .815 .061 .406 .233
QeVAE .991 .992 .991 .912 .616 .764

From tables(1-3), we observe that across all quantum states we considered the final fidelity obtained
from a QeVAE outperforms the classical VAE and a random guess. In addition, the number of
learnable parameters in the classical VAE is typically of the order 2(n) while those in a QeVAE is
4n+ ϵ where n is the number of qubits and ϵ is a constant (ϵ < 4). To further validate our findings,
we run the best QeVAE models on real quantum devices and see that the obtained fidelity is higher
than those achieved by classical methods (Table 1 in Appendix C). Our proposed algorithm achieves
the highest fidelity across all types of datasets.The inherent ability of our model to learn quantum
correlations i.e we are able to produce entangled multi-qubit states through variational quantum
circuits and tailor the rotation gates to reproduce a desired distribution allows them to outperform the
classical model for the quantum circuit, haar random and kicked rotor states.

Hardware run: We execute the best model trained on the simulator on IBM Hardware by transpiling
the decoder circuit. To generate the output distribution, random samples from N(0, 1) are propagated
through the preprocessor linear layer and then through the circuit (executed on hardware). An average
over all initial random points yields the desired output distribution. Our results are depicted in Figure
2 in Appendix B and in Table 1 in Appendix C. We find that final fidelity is lesser than that on a
simulator. Using error mitigation and suppression techniques, we are able to perform better than the
classical VAE.

Circuit compilation: We now present a practical application of QeVAEs on the task of circuit
compilation. Circuit compilation or circuit compression is an important area of focus in the NISQ era.
Since the depth of circuits executable on hardware is limited, there is a need to transform deep circuits
into shallow ones by altering the sequence of gates and reducing the overall size and complexity.

We simulate an unknown quantum state by considering a deep quantum circuit with twenty layers
of rotation and entangling gates. In reality, the form of the circuit is unknown and one only has
access to the measurement data. A projective measurement on such a state produces a measurement
distribution as shown in Figure 1(e) in Appendix B. Note that our goal here is to reproduce the
measurement distribution and not to learn the original state itself. Through the QeVAE learning
approach, we can learn the measurement distribution with high fidelity. After training, we can discard
the encoder part of the circuit, and the decoder provides a sequence of gates that can be implemented
on hardware to generate the same distribution. We achieve a final fidelity of 0.956 (Figure 1(d) in
Appendix B) and a multi-fold reduction in the number of gates as seen in Figure 1(b) in Appendix B.
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The initial circuit contains: 80 Rx gates, 80 Ry gates, 63 CNOT gates which are reduced to 28, 20,
and 6 respectively, yielding an overall 4x reduction in total number of gates and 3x reduction in the
number of parameters.

5 Conclusion and Outlook

The major outcome of our work is a working hybrid quantum-classical machine learning model for
generative learning .In addition, our models are particularly suitable for quantum devices with small
number of noisy qubits with limited connectivity. With this algorithm, we have investigated the
ability of quantum generative models to learn the distributions obtained from the measurement of
quantum many-body systems. Such distributions are known to be demanding for classical generative
models and we verify the same in our experiments. We further go on to show that our proposed
hybrid-model can learn these distributions with a much higher final fidelity. In addition, we have
shown that QeVAEs can be useful for the practical task of circuit compilation.
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A Proofs

Proof of Theorem 1.
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Proof. 1.

p(x) =

∫
p(x, z)dz

=

∫
p(z)| ⟨x|VθUϕ(z) |0n⟩ |2dz

=

∫
p(z) ⟨x|VθUϕ(z) |0n⟩ ⟨0n|Uϕ(z)

†V †
θ |x⟩ dz

= ⟨x|Vθ(
∫
p(z)Uϕ(z) |0n⟩ ⟨0n|Uϕ(z)

†dz)V †
θ |x⟩

( By linearity of inner product)

We define ρ :=
∫
p(z)Uϕ(z) |0n⟩ ⟨0n|Uϕ(z)

†dz
Note

(a) ρ is a valid density matrix i.e. ρ† = ρ, ρ ≥ 0 and Tr(ρ) = I

(b) ρ is independent of both x and z.

Then,

p(x) = ⟨x|VθρV †
θ |x⟩

Thus, such the p(x) is equivalent to preparing a density state ρ, evolving under unitary Vθ,
and performing a measurement in standard basis.

2. For the second part, given a density matrix ρ, consider the sepctral decomposition of ρ as
ρ =

∑
z λz |ψz⟩ ⟨ψz|. Since ρ is a valid density matrix, λz’s define a distribution p(z) = λz .

Now, for each z, choose a unitary such that Uϕ(z) |0⟩ = |ψz⟩. Now, one can verify that such
a feature map satisfies the required equation.

B Figures

C Tables

Table 4: Hardware results for a 4 qubit quantum circuit state

State Fidelity Simulator Hardware Suppression Mitigation
Uniform 0.477 ✓
CVAE 0.501 ✓
QeVAE 0.981 ✓
QeVAE 0.658 ✓
QeVAE 0.642 ✓ ✓ ✓
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(a)

(e)(d)

(c)

(b)

Figure 1: Circuit compilation with QeVAEs: (a) Original circuit structure that produces a mea-
surement distribution. The orange box represents a single layer of rotation and entangling layer
that is repeated 20 times. (b) The compiled circuits requires very few gates when compared to the
original circuit that produces the state. Particularly, the number of CNOT gates is reduced by ∼14X
(c) The variational quantum circuit containing the Pauli-Z feature Map that embeds data x from the
latent space and the ansatz with only 16 parameters. (d) Results of training the ansatz to produce
the measurement distribution. We achieve a final fidelity of 0.956 (e) Original and the distribution
produced by the QeVAE after training.

Figure 2: Inference on IBM hardware: The true distribution produced by an unknown 4-qubit
system (green) is used to train a QeVAE on IBM’s qasm-simulator (blue) that results in a final of 0.97.
After training, the decoder is executed on the IBM-Manila. The measurement distribution produced
from hardware has a total fidelity of 0.658 which changes to 0.642 with error-mitigation (Zero noise
extrapolation) and error-suppression (Dynamic decoupling)
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