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Abstract

Constructing the reduction model of large-scale pattern dynamics is challenging.
In this study, a framework is proposed to estimate a reduction model of the gradient
system, often observed in various pattern dynamics, in a data-driven manner using
a deep learning model inspired by Hamiltonian neural networks for video. Further-
more, the proposed framework verifies whether the reduction model is consistent
with the phenomenon and contains useful properties. To demonstrate its usefulness,
it is applied to the numerical calculation data of magnetic domain pattern formation.
Consequently, the previous reduction model proposed for magnetic domain pattern
dynamics is found to be insufficient to explain the phenomenon, and suggestions
for possible directions for the improvement of the reduction model are provided.

1 Introduction

Various natural phenomena, such as crystal growth [9, 13], organism pattern formation [15], and
magnetic pattern formation [7, 8, 10], can be modeled as large-scale gradient systems that follow
the gradient of an energy function (potential function). The potential function depends only on the
system state. In such gradient systems, both the potential function and its gradient play crucial roles.

To understand the macroscopic behavior of such large-scale systems, scientists have constructed not
only microscopic models but also its reduction models for various unknown phenomena that reflect the
representative features of the observed phenomena without contradicting them [1–3, 14]. However,
the construction of reduction models typically requires extensive experimentation, considerable
knowledge, and novel insights from experts, thereby rendering such modeling highly challenging.
Chen et al. [4] developed a framework to support the construction of reduction models using machine
learning techniques. Chen et al. used neural networks to extract low-dimensional reduced coordinate
systems from the spatiotemporal data of large-scale systems; subsequently, they modeled time
evolution in a reduced coordinate system. Generally, models obtained using neural networks are
black boxes that cannot be interpreted by humans. Chen et al. evaluated a reduced coordinate
system modeled by a neural network to extract information that could be used to guide physicists
in constructing interpretable reduction models. However, Chen et al. interpreted only the reduced
coordinate system, and did not focus on the interpretation of the time evolution model. In gradient
systems, which are the focus of our study, time evolution is governed by the potential function;
therefore, extracting interpretable information regarding the potential function of the reduction model
is particularly essential.
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Figure 1: Overview diagram of the proposed framework in this study. First, using the network shown
in (A), the reduced potential function VNN is obtained, as shown in (B). Next, as illustrated in (C), the
true time-series image data at a certain time is compared with the predicted time-series image data
derived according to VNN to validate its suitability as a potential function. Subsequently, the gradients
of VNN are analyzed to establish connections with the insights and properties of the phenomenon.

In this study, a framework to estimate a reduction model of the potential function (reduced potential
function) from data for unknown phenomena that are expected to follow gradient systems is proposed.
Furthermore, the proposed framework validates whether the reduced potential function is consistent
with the observed phenomena and incorporates the useful properties of the phenomena.

When the reduced potential function is obtained, useful properties governing gradient systems, such
as the potential gradient, can be extracted.

2 Proposed framework

In this study, a framework that estimates the reduced potential function from data for unknown
phenomena expected to follow gradient systems is proposed. The framework further validates
whether the model is consistent with the observed phenomena and incorporates its useful properties.

An overview of the proposed framework is presented in Figure 1. In this framework, as shown in
Figure 1(A), firstly the reduced potential function of a gradient system is estimated by training a
deep neural network VNN, inspired by Hamiltonian neural networks (HNN) [5], on time-series image
data of unknown phenomena. HNN is an excellent neural network, and it can estimate the energy
function (Hamiltonian) from time-series image data of the phenomenon. It consists of an autoencoder
(AE) [6], which estimates the spatial distribution (phase space) of the system positions and momenta
from the time-series image data, and neural network, which models the relationship between the
phase space and Hamiltonian. The details of the model shown in Figure 1(A) are discussed later in
this section. Subsequently, as shown in Figure 1(B), the values of the reduced potential function
for each time step of the time-series image data are obtained using the trained network. In gradient
systems, the following is known.

du
dt
= −
∂V
∂u

(1)

where u represents the state of the system, t is time, and V is the potential function. Equation (1)
indicates that by moving u in the direction of − ∂V

∂u , the temporal evolution of the system can be
obtained. Therefore, as shown in Figure 1(C), to verify whether VNN captures the gradient information
of the phenomenon with reasonable accuracy, the time-series image data perturbed by ∆t according
to the gradients of VNN can be compared with the true time-series image data.

Next, we describe the details of the model shown in Figure 1(A) used to estimate the reduced potential
function using the data. To model the reduced potential function, first, a latent space that explains the
system is constructed using an AE. The AE used in this study is composed of an encoder network
E, which transforms the time-series data Xt at a specific time t into a reduced vector zt, and decoder
network D, which predicts Xt from zt as E(Xt) = zt, D(zt) = X̂t. AE is trained to minimize the loss
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function LAE =
∥∥∥X − X̂

∥∥∥
2. Using such an AE, a space in which the time-series data Xt are represented

as reduced vector zt can be created. The obtained reduced vector zt from the AE, which represents
the time-series data Xt in a reduced form, can be considered as the system state ut; thus, we treat
zt = ut.

Notably, the neural network VNN that constructs the reduced potential function in the latent space
mapped by the AE can learn the values that are "similar" to the system’s potential from the data using
a loss function, based on Equation (1). VNN learns the reduced potential function by minimizing the
loss function represented by LV =

∥∥∥ dz
dt +

∂VNN
∂z

∥∥∥
2
, while assuming that dz

dt is observable and considered
as data. In this study, such "similar" reduced potential functions obtained by training the neural
network such as VNN are referred to as the Neural Reduced Potential.

Herein, the entire network used for estimating the reduced potential function in the gradient system
was trained to minimize the combined loss function, which is the sum of LAE and LV weighted by λ.

Lall =
∥∥∥X − X̂

∥∥∥
2 + λ

∥∥∥∥∥dz
dt
+
∂VNN

∂z

∥∥∥∥∥
2

(2)

Here, λ = 0.1. Furthermore, note that the objective of this study was not to propose a method for
predicting the dynamics of a system from observable data but to determine a potential function based
on the data. Therefore, to ensure that the determined potential function represents the phenomenon
more accurately, the input to VNN includes both z, which represents the system, and some of the
physical parameters that explain it.

3 Demonstration

In this study, the effectiveness of the proposed method was validated by introducing the case applied
in the proposed framework to the simulation data of the magnetic domain pattern dynamics occurring
in magnetic materials. Magnetic materials are important industrial materials that are widely used
in various devices, such as car motors and magnetic heads on hard disks. Understanding the energy
possessed by magnetic materials is crucial for considering their suitability and performance as
magnetic materials. The potential function of the magnetic domain pattern dynamics is often modeled
as: ∂ϕ(r)

∂t = −
δH
δϕ(r) , using the time-dependent Ginzburg–Landau (TDGL) equation [11]. Where

H = αλ(r)
∫

dr
(
−
ϕ(r)2

2 +
ϕ(r)4

4

)
+β
∫

dr |▽ϕ(r)|2

2 +γ
∫

drdr′ ϕ(r)ϕ(r′)
|r−r′ |3 −h(t)

∫
drϕ(r). The TDGL equation

is already a 2D model that effectively captures this phenomenon. However, it is a high-dimensional
model that describes the system using a scalar field ϕ(r) : R2 → R composed of the average of the
vertical components of the spins in small grid-like regions, and the resulting patterns can be complex.
Thus, extracting interpretable descriptors to understand the mechanisms of a system is challenging
when using only this model. Therefore, we attempted to extract them from the reduced potential
function acquired by applying the proposed approach to the magnetic domain pattern dynamics
obtained through simulations using the TDGL equation. The simulation data used in this study were
generated based on the study by Kudo et al. [10], as follows. First, a saturation magnetic field hinit
was applied, and a constant decay rate v was assumed for the external magnetic field h(t). Therefore,
h(t) can be written as h(t) = hinit − vt (t < T0) or h(t) = 0 (t ≥ T0), where, T0 is the time at which
h(t) first becomes 0 and is considered as T0 =

hinit
v . The simulation was performed up to the time

t = 2T0. Further, v = 10−2, the magnetic interaction between neighboring spins was set as β = 2.0,
the magnetic dipolar interaction was γ = 2.0/π, λ(r) ∼ N(0, 0.32), hinit = 1.5, and the magnitude of
the anisotropy α was varied within the range of [1.0, 4.0].

In the demonstration, the input Xt to the AE used in proposed approach is a matrix with ϕ(r), simulated
based on TDGL equation, as elements. Furthermore, to ensure that the determined potential function
represents the phenomenon more accurately, the input to VNN includes not only z, which represents
the system, but also the magnitude of the anisotropy α and the external magnetic field h(t).

3.1 Reduced potential function of magnetic domain pattern formation process

This section discusses the study by Mototake et al. [12], who attempted to construct reduced potential
function in the typical manner using their novel insights. They conducted analysis on the magnetic
domain pattern dynamics obtained through simulations using the TDGL equation and thereby
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Figure 2: Results obtained by applying the proposed framework to the simulation data of the magnetic
domain pattern dynamics. The solid lines in (A) represent the relationship between VNN and time t,
and the dotted lines represent the root mean square error of the true pattern images and the predicted
pattern images obtained by varying true pattern image at the time t − 1 according to the VNN. Here,
the red and blue lines depict the differences in the time evolution of VNN owing to variations in
the anisotropy α. Additionally, the points labeled a–f on the left figure correspond to (B). The
"Ground Truth" column in (B) represents the true pattern images at time t for points a–f, whereas the
"Prediction" column shows the predicted pattern images. (C) represents the relationship between the
gradient of VNN and anisotropy α at time Tinit.

demonstrated that the final magnetic domain patterns can undergo transitions in the following order
with respect to changes in anisotropy: labyrinth structure, island structure (or a mixture of labyrinth
and island structures), and then labyrinth structure again. Furthermore, they confirmed that these two
labyrinth structures undergo different formation processes. Based on these findings, they focused
on the moment of occurrence of the negative magnetic domains and made significant assumptions,
such as the formation of the same magnetic domain. Thus, they proposed a reduced potential
function that can explain the two distinct labyrinth structures with different formation processes.
This reduced potential function undergoes a qualitative transition beyond a certain threshold of
anisotropy, particularly before and after the occurrence of negative domains. Furthermore, this
reduced potential function successfully explains the differences in the formation processes of the two
labyrinth structures based on such characteristics.

4 Result

In this study, next, the proposed approach was applied to the simulation data based on the TDGL
equation of the magnetic domain pattern dynamics, and the obtained results are discussed as follows.

The solid lines in figure 2(A) depict the relationship between acquired Neural Reduced Potential
VNN and time, and the dotted lines depict the root mean square error of the true pattern images at
time t and the predicted pattern images at time t obtained by varying true pattern image at the time
t − 1 according to the VNN. Here, the blue and red lines represent different values of anisotropy
α. Figure 2(B) shows comparison of the true and predicted pattern images at each time step. The
column labeled "Ground Truth" in Figure 2(B) corresponds to the true pattern images at each time t,
whereas the "Prediction" column represents the predicted pattern images at time t. The rows labeled
a–f correspond to points a–f plotted in Figure 2(A). The dotted lines in figure 2(A) and figure 2(B)
show that the true and predicted pattern images at each time step are significantly similar. Therefore,
the Neural Reduced Potential VNN, acquired using the proposed framework, is the reduced potential
function that adequately represents the properties of the potential in the gradient system.

Potential gradients are particularly important for gradient systems. Therefore, herein, valuable
insights into the properties of this phenomenon were revealed using the gradient information of the
reduced potential function VNN. Furthermore, to verify the reduced potential function proposed by
Mototake et al., focus was placed on the gradients of VNN at time Tinit, which indicates the onset of
the negative magnetic domains. Time Tinit was defined as Tinit = min {t | minmatrix(Xt) < 0}, where
Xt represents the matrix of the magnetic domain pattern image at time t and minmatrix is a function
that returns the minimum element of the matrix. Figure 2(C) illustrates the relationship between
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anisotropy α and the gradients of VNN at time Tinit. As shown in figure 2(C), the gradients of VNN
change continuously with the variations in anisotropy α.

5 Discussion

Mototake et al. analyzed data and accordingly constructed a reduced potential function to effectively
explain the two labyrinth structures in magnetic pattern-formation process. Evidently, the reduced
potential function qualitatively transitioned with changes in anisotropy [12]. However, the analysis
results obtained in this study (section 4) suggest that the gradient of VNN with respect to changes in
anisotropy α varies continuously. Therefore, the data-driven reduced potential function VNN does
not exhibit discontinuous transitions with changes in anisotropy. Furthermore, the reduced potential
function proposed by Mototake et al. does not consider the intermediate structure between the two
labyrinth structures, namely the island structure (or a mixture of labyrinth and island structures),
which exists during the formation process with varying anisotropy. The results obtained herein
(section 4) imply that their model does not sufficiently explain this phenomenon. Thus, their proposed
model must be modified to ensure that it considers the intermediate structure between the two
labyrinth structures.
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