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Abstract

We present a framework for constraining the automatic sequential generation of
equations to obey the rules of dimensional analysis by construction. Combining
this approach with reinforcement learning, we built Φ-SO, a Physical Symbolic
Optimization method for recovering analytical functions from physical data lever-
aging units constraints. Our symbolic regression algorithm achieves state-of-the-art
results in contexts in which variables and constants have known physical units,
outperforming all other methods on SRBench’s Feynman benchmark in the pres-
ence of noise (exceeding 0.1%) and showing resilience even in the presence of
significant (10%) levels of noise.

1 Introduction

Physical theories traditionally stem from empirical laws. Physicists typically observe natural phenom-
ena, formulate empirical laws to describe them, and subsequently construct overarching theories that
encompass these laws. For example, Newton’s law of universal gravitation was designed to explain
both the motion of terrestrial objects as well as Kepler’s law of planetary motion [9]. However,
with the rise of deep learning, many empirical laws have transitioned into complex neural network
representations, rendering their integration into overarching physical theories expressed as analytical
equations much more complex. Symbolic regression (SR) emerges as a pivotal approach to bridge
this gap in interpretability.

Symbolic regression SR consists in the inference of a symbolic analytical function f : Rn −→ R
that accurately represents the relationship y = f(x) provided a data pair (x, y). Unlike numerical
parameter optimization methods, SR involves the exploration of the space of functional forms
themselves by optimizing the arrangement of mathematical symbols (such as x, +, −, ×, /, sin,
exp, log, and more). The discrete combinatorial challenge presented by SR makes it an “NP hard”
(nondeterministic polynomial time) problem [15] without even factoring the additional challenge of
optimizing free constants in a continuous space. SR therefore requires the development of efficient
strategies for avoiding sub-optimal guesses.

Related works SR has traditionally been tackled using genetic programming, and is notably at
the heart of the Eureqa software [11] and its successor algorithm AFP_FE [12]. However, with
the advance of deep learning techniques, multiple frameworks have been proposed to use neural
networks for SR [5]. As in previous deep learning SR work [4, 1, 10], here we employ a recurrent
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neural network (RNN) to repeatedly sample tokens representing mathematical symbols or variables:
ultimately generating complete expressions in prefix notation1 in which operators are written first
and their arguments second, which alleviates the need for parentheses. This type of approach
includes DSR [10, 7] which is the current state-of-the-art approach for exact symbolic recovery in
the presence of noise [5]. This approach relies on a risk-seeking reinforcement learning policy,
which we adopt in this study. We also note that in the context of the physical sciences, previous
works (e.g., [13, 8]) have taken into consideration the units associated with data, proposing to render
datasets dimensionless using the Buckingham Π theorem [2]. This effectively renders variables and
constants dimensionless by means of multiplicative operations amongst them as an initial step before
SR, thereby relinquishing symbolic arrangement constraints arising from dimensional analysis but
ensuring the physical consistency of generated expressions in terms of units.

Contribution Here we propose a Physical Symbolic Optimization (Φ-SO) framework. This
framework operates in contexts in which the units of variables and constants involved are known
leveraging dimensional analysis to constrain the symbolic arrangement during the generation of
equations. Specifically, Φ-SO builds upon the reinforcement learning SR framework pioneered
in [10], equipping it with an in situ supervised learning component designed to teach the RNN
dimensional analysis rules, guiding its exploration of the search space towards not only accurate but
physically meaningful combinations.

In Section 2, we detail our methodology. In Section 3, we show that in physical contexts in which all
units involved are known, Φ-SO outperforms state-of-the-art baselines in exact symbolic recovery
and discuss those results. Finally, Section 4 summarizes our conclusions.

2 Method
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Figure 1: Expression generation sketch. For each token, the RNN is given symbolic and units related
contextual information regarding the next token to generate. Based on this information, the RNN
produces a categorical distribution over the space of available tokens (top histograms) as well as a
memory state which is given to the RNN on its next call. Φ-SO generates in situ categorical labels
encoding which tokens can be chosen based on dimensional analysis rules (bottom histograms). The
generated distribution is then masked based on those constraints, forbidding tokens that would lead to
nonsensical expressions. The resulting token is sampled from this distribution, Φ-SO then updates the
local unit constraints of the partial tree representing the expression being generated. Repeating this
process, from left to right, allows one to generate a complete physical expression, here [+, v0, /, x, t]
which translates into v0 + x/t in the infix notation we are more familiar with.

Expression generation The expression generation procedure is detailed in Figure 1. At each token
generation step, the RNN, here a long-short term memory (LSTM) type RNN [3], is given as input

1There is a one-to-one relation between this representation which is commonly used in symbolic computation
and the “infix” representation we are more familiar with.
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contextual information regarding the next token to be generated. This includes the nature of its
parent token in a tree representation of the expression as well as its units or local units constraints
if the token is a mathematical operation. Similar information is passed regarding the sibling and
the previously generated token. In addition, the required units of the token to be generated and
the number of dangling nodes in a tree representation (i.e. number of tokens required to finish the
expression) are also passed to the RNN. This information is then leveraged by the RNN to produce a
categorical distribution over the space of choosable tokens maximizing the probabilities of tokens
obeying dimensional analysis rules and resulting in accurate expressions.

In situ dimensional analysis As illustrated in Figure 1 before each token generation step, we
run an algorithm that updates the local units constraints2 of the expression nodes based on the new
token sampled at the previous step following the dimensional analysis prescriptions given in Table
1. This information is used to produce the units related inputs of the RNN as well as to constrain
its output categorical distribution in favor of tokens obeying dimensional analysis. Effectively, we
deterministically produce inputs and labels on the fly for the RNN to learn on in a supervised manner.

Expression Units
τA ± τB ΦA or ΦB

−τA ΦA

τA × τB ΦA +ΦB

τA/τB ΦA − ΦB

τA
n n× ΦA

op0(τA) 0

(a) Dimensional analysis rules

Expression Requirement
τA ± τB ΦA = ΦB

y = τA Φy = ΦA

op0(τA) ΦA = 0

(b) Units requirements rules

Table 1: Dimensional analysis prescriptions to enforce. With τA, τB , y, ΦA, ΦB , Φy referring to
two nodes, the output variable and the powers of their units vectors, op0 denoting a dimensionless
operation (e.g., {cos, sin, exp, log}) and τA

n representing any power operation (including e.g.,
1/τA = τA

−1,
√
τA = τA

1
2 )

Training Expressions are rewarded based on their fit quality on a given target dataset (x, y). For
each expression, free constants appearing in it are first optimized using the LBFGS [16] algorithm and
the reward defined as the squashed normalized root mean squared error (Reward = 1/(1+NRMSE))
is then computed. Subsequently, the RNN is trained based on those rewards following the risk-
seeking policy gradients detailed in [10] with improvements from [7]. It should be noted that in
order to prevent the expression generation phase going on forever, in addition to dimensional analysis
considerations, the categorical distribution emitted by the RNN is masked in an expression length
dependent manner such as to favor terminal nodes (i.e. variables and constants), thereby encouraging
its termination, before a maximum expression size limit is reached. This indispensable length prior
can conflict with the constraints arising from our dimensional analysis module, resulting in the
expression being discarded. This conflict typically results in ∼ 90% of expressions being discarded
in the first few training epochs. This makes it essential for the RNN to learn dimensional analysis
rules and not solely rely on the deterministic constraints imposed a posteriori in order to avoid such
situations. This learning process can typically be monitored by keeping track of the rate of discarded
expressions as a function of training epochs.

3 Results & Discussion

We evaluated Φ-SO following the SRBench standard SR benchmarking procedure [5]
(github.com/cavalab/srbench) against 17 baseline SR methods. Conveniently, the bulk of this bench-
mark consists of 116 ground-truth challenges from [14] with physical units associated with each
variable involved making it straightforward to apply our method. It is worth noting that, despite the

2Since the algorithm only has access to an incomplete expression containing dangling nodes, it is sometimes
impossible to compute the required units of a token, in these cases, the token units are temporarily marked as
free i.e. able to accommodate any units.
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Figure 2: Exact symbolic recovery rate, rates of accurate expression (having R2 > 0.999) and rate
of accurate expressions normalized by the number of free parameters appearing in expressions for
our PhySO algorithm and 17 baselines, averaged across 116 ground-truth Feynman SR problems
following the standardized SRBench [5] benchmarking method.* denotes results taken from [6].

availability of units in this benchmark, Φ-SO and AI Feynman [14] are the only methods that have
harnessed this dataset to leverage the associated units.

We maintained strict consistency by employing the same set of hyper-parameters for all challenges.
These parameters included permitting the use of {+,−,×, /, 1/□,

√
□,□2,−□, exp, log, cos, sin}

as well as two dimensionless adjustable free constants and a constant equal to one {θ1, θ2, 1}. In
addition, we strictly adhered to the established benchmarking rules, which included employing
a dataset consisting of only 10,000 data points and limiting the maximum number of expression
evaluations during the search to 1 million for each challenge. This computational process typically
takes about 1 hour, utilizing all cores of an Intel Xeon W-2155 CPU. It should be noted that Φ-SO
typically converges toward the correct expression well before reaching this evaluation limit or not at
all. Φ-SO’s performances on these challenges against baseline methods are given in Figure 2.

Exact symbolic recovery In contrast to DSR, which relies solely on reinforcement learning, Φ-SO
leverages both reinforcement learning and dimensional analysis. This combined approach yields
significantly improved results, underscoring the substantial advantages conferred by unit constraints.
While our method ranks second in noiseless scenarios, it excels in the presence of even minimal
noise levels (exceeding 0.1%), outperforming all other baseline methods in exact symbolic recovery.
Notably, even at a higher noise level of 10%, when scores for all other methods drop below 20%,
Φ-SO consistently maintains a score above 50%. It is essential to note that many SR exploration
strategies are driven by accuracy with minimal constraints on symbolic arrangement. Nevertheless,
the paths leading to optimal fit quality and those leading to ideal symbolic arrangement (perfect fit
quality and exact symbolic recovery) are not necessarily aligned. Essentially, one can enhance the fit
quality of candidates over learning iterations while deviating further from the correct solution in terms
of symbolic arrangement. As such, we attribute Φ-SO’s performance to the invaluable constraints on
symbolic arrangements given by dimensional analysis.

Fit quality When considering the fraction of expressions with R2 > 0.999 (defined as R2 =

1−
∑N

i=1(yi − f(xi))
2/
∑N

i=1(yi − ȳ)2), numerous methods attain high scores by incorporating a
substantial number of free constants. This approach often leads to the creation of complex expressions
that frequently lack interpretability and deviate from dimensional analysis principles. While this
may not pose significant issues in many fields in which accuracy is the only priority, it becomes a
crucial concern in the context of the physical sciences. We therefore present in Figure 2 the rate of
accurate expressions normalized by the number of free constants. This metric provides insight into
the efficiency of models while taking into account their complexity. In this context, Φ-SO stands out
as the leading method, excelling in the generation of concise, physically consistent, and interpretable
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expressions that approximate datasets, that is when it does not actually find the exact target symbolic
expression.

Limitations It should be noted that our system requires all variables and constants involved to have
defined physical units to exploit dimensional analysis constraints and that it is mostly adapted for
exact symbolic recovery of concise and interpretable expressions. This largely limits its relevance to
the physical sciences, in contrast to other SR methods that aim to produce longer but more accurate
approximations that are computationally less expensive to evaluate than neural networks. In addition,
we note that contrary to end-to-end supervised learning based methods such as [4, 1], in the trial-and-
error based strategy adopted here the neural network is reinitialized at the beginning of each SR task,
preventing it from learning more generalized relations between datasets and analytical expressions.
Future work will focus on equipping our framework with this ability as in [6].

4 Conclusion

We presented a Physical Symbolic Optimization (Φ-SO) framework that is able to constrain the
generation of equations on the fly to ensure that the rules of dimensional analysis are obeyed by
construction. We expect this framework to be useful for many symbolic computation applications
in the physical sciences. Here, we combined it with the state-of-the-art reinforcement learning
strategies from [10, 7] resulting in a physics relevant SR method achieving state-of-the-art results on
the standard Feynman benchmark from SRBench.

Code availability

The documented code for the Φ-SO algorithm, along with demonstration notebooks, is accessible
on GitHub at github.com/WassimTenachi/PhySO ©, complete with comprehensive documentation.
A frozen version related to this work is released under tag v1.0.0 © and deposited on zenodo:
10.5281/zenodo.8415435.

For the sake of result reproducibility, we offer a straightforward method to replicate the outcomes
presented in Figure 2 by simply executing the following command: python feynman_run.py
–equation i –noise n. This command will run PhySO on challenge number i ∈ {0, 1, ..., 119}
of the Feynman benchmark, employing a noise level of n ∈ [0, 1].
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