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Abstract

Recent research has highlighted the incorporation of prior physics knowledge into
neural networks by construction of special neural activation functions. For this,
we consider (i) Gaussian process kernels that adhere to the principles of physics,
and (ii) the infinite-width correspondence between neural networks and Gaussian
processes. Together, this begs the question for infinite-width neural networks that
are consistent with the laws of physics. So construed regression models may find
specialized applications such as inverse problems, uncertainty quantification or
optimization of or with physical models. These ’surrogate’ models should learn
efficiently from limited data while generalizing in a physically sensible manner.

1 Background

The integration of prior physics knowledge into machine learning (ML) models has received in-
creasing attention in the natural and computational sciences due to the need for ’surrogate models’
that can perform with limited data, whilst they ought to give physically sensible and trustworthy
predictions nevertheless. The “infinite-width correspondence” herein refers to the fact that neural
networks (NNs) converge in the infinite-width limit towards Gaussian processes (GPs) [17]. This
infinite-width limit has led to a number of key insights into NN deep learning and training dynam-
ics such as the Neural Tangent Kernel (NTK) [11], or that Dropout is a Bayesian approximation
[8]. On the other hand, the emerging paradigm of physics-informed ML (PIML) [13, 18, 19] had
great impact in Computational Science & Engineering (CSE) by enabling high-dimensional surro-
gate models [25, 24]. In CSE, a surrogate model is a fast, parametrized approximation to complex,
expensive large-scale simulations. A surrogate then enables many-query problems such as optimiza-
tion, calibration or Uncertainty Quantification (UQ) [9, 14, 21]. The idea of PIML is essentially to
regularize the training with a “physics-loss” (cf. Sec. 2.4) in order to achieve faster convergence and
better generalization with less data.

While extremely useful once trained, PIML models are typically hard to train [27, 5, 7, 22]. We
take a completely new approach to this problem based on a connection between GPs, NNs and
physics in the form linear (differential) equations (DEs). Built on relationships in Fig. 1, the basics
are provided by: (1) A set of methods to construct physics-consistent GP kernels for linear DEs
[26, 15, 10, 1]. Non-linear Partial Differential Equations (PDEs) may potentially be feasible as well
[4], but are not the subject of this work . (2) The fact that infinite (shallow or deep) NNs behave
like GPs [17]. This is due to the Central Limit Theorem, which states that a large sum of random
variables, e.g. a Bayesian neural network’s output for any input, follows a Gaussian distribution
under mild conditions (bounded activations, existing momenta). Note that these findings hold for
a very general class of (deep) NNs, even e.g. Transformers [29, 16, 6]. (3) Mercer’s theorem or
the ”kernel trick” relates GP kernels to their feature maps or basis functions. In reproducing kernel
Hilbert spaces (RKHS), a kernel can be represented by inner products of its eigenfunctions, and vice
versa functions can be represented by linear kernel combinations (representer theorems). Quoting
literally from [12]: “Which activation function should we use? This is one of the most basic and
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meaningful questions that could be posed. [...] there is no rule of thumb for choosing the optimal
activation function”. There are no principles beyond taxonomy or heuristics [3].

Figure 1: Overview of the basic relationships that connect the three mathematical notions of neural
networks (NNs), Gaussian processes (GPs) and physical laws in the form of (differential) equations,
here expressed as a (symbolic) operator Ôx acting on x. An example for such a symbolic operator
would be Ôx ≜ ∇2, then Ôxf(x) := ∇2f(x) = 0 would imply that f(x) obeys this homogeneous
Laplace equation. (1) Linear operators Ô applied to a GP GP with kernel k yield again a GP with a
new kernel ÔxÔx′ ◦k. This can be seen e.g. from applying a linear operator to a (generalized) linear
model first, and only in the second step applying the kernel trick. Cf. excellent literature [15]. (2)
NNs in the large-width limit behave like GPs. (3) The “kernel trick”is based on Mercer’s theorem.

2 Physics-consistent Gaussian processes & their Infinite Neural Networks

We introduce two sets of functions V,W : X → Y ⊆ RQ. From the first set V , we denote two
particular elements as g(x) ∈ V, x 7→ g(x) and f(x) ∈ V, x 7→ f(x), x ∈ X ⊆ RD, where
D,Q denote input/output dimension. No special assumptions are made on these (integer, finite)
dimensions. We aim to learn these functions from data related to some physical law expressed in
terms of a linear operator Ô : V → W , Ô ◦ f(x) 7→ f̃(x). In words, an operator maps a function
from one set V to another set W . Linearity requires Ô◦(α ·f+β ·g) = α · Ô ◦f+β · Ô ◦g for some
constants α, β ∈ R. Let the physical law be expressed in the form Ôf(x) = 0 (◦ is omitted from
now). E.g. Ô could be the D-dimensional Laplace-operator Ô ≜ ∇2 :=

∑D
k=1

∂2

∂x2
k

, xk denoting

the k − th element of D-dimensional vector x = (x1, ..., xD)T . In the following, g denotes a GP
and f denotes a NN.

2.1 Physics-consistent Gaussian processes

Following closely the notation from [15], let g be a GP with mean function µ : RD → RQ :

x 7→ ⟨g(x)⟩ and a positive semi-definite covariance function k : RD ⊕ RD 7→ RQ×Q
⪰0 : (x, x′) 7→〈(

g(x)− µ(x)
)(
g(x′)− µ(x′)

)T 〉
, where ⟨·⟩ denotes expectations. For simplicity, µ ≡ 0.

g(x) ∼ GP
(
0, k(x, x′)

)
(1)

We further require that g be consistent with a physical law expressed in terms of a linear differential
operator Ôx, i.e. differential wrt x, such that it admits the following equation

Ôxg(x) = 0 , (2)
In other words, we use a GP as an ansatz for solving eq. (2). As mentioned before, this can be a
differential operator defining a differential equation. If g(x) is a GP, then, due to linearity of Ô,
Ôxg(x) yields again a GP,

Ôxg(x) ∼ GP
(
0, Ôxk(x, x

′)Ô†
x′

)
(3)
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where † denotes the adjoint, acting on the second argument of the kernel function x′ from the right
[15]. We have introduced the subscript x to clarify on which argument of the kernel the differential
operator is acting upon. The above relationship can be used to formulate a number of equivalent
physics-consistency conditions for the GP (or its kernel, respectively), e.g. from [26]

ÔxÔx′ k(x, x′)
∣∣∣
x=x′

!
= 0 . (4)

The solution for k in eq. (4) then defines a GP that satisfies eq. (2) a priori, i.e. before training. In
other words, these physics-consistency conditions can be used to find and design physics-consistent
kernels. For this, Mercer’s theorem can be especially useful, in that it states that a kernel function
(i.e. an element from a reproducing kernel Hilbert space) can always be expressed in terms of a set
of basis functions {ϕi} and vice versa [23]. Formally, this means

k(x, x′) = lim
P→∞

P∑
i,j

ϕi(x)Mijϕj(x
′) (5)

with a suitable prior covariance matrix M for the function weights. Note that Green’s functions
or fundamental solutions are especially interesting candidates for basis functions, as their kernel
inherits their physical properties [1, 20] (in a sense, applying the kernel trick to Green’s functions).

2.2 Infinite neural networks

Let us now consider a NN f with a single hidden layer with N neurons with non-linear but bounded
activation functions h, where the index n = 1, ..., N sums over the N neurons in the hidden layer.
wn and vn are the input-to-latent and latent-to-output weights respectively, and b are bias terms.

f(x) =

N∑
n=1

vnhn

(
wn · x+ bn

)
, (6)

Under the infinite-width limit, N → ∞, eq. (6) converges to a Gaussian process, i.e. a Gaussian
distribution ∀x, by the Central Limit Theorem if the activation functions hn are bounded and weights
and biases are i.i.d. [17]. Note that a significantly larger class of deep NNs show this property, cf.
[29]. The NN converges to a GP with kernel k, with following condition for equivalence

k(x, x′)
!
=

〈
f(x)f(x′)

〉
, (7)

The integral r.h.s. can be solved numerically, and in some cases analytically [28]. Note that eq. (7) is
essentially determined by the covariance of the activations for a fixed NN feed-forward architecture.

2.3 Physics-consistency condition for neural networks

Substituting the NN-GP consistency condition eq. (7) into the physics-consistency condition for the
GP eq. (4) (or variants thereof), allows us to formulate a physics-consistency condition for the NN,

ÔxÔx′k(x, x′)
!
=

〈
Ôxf(x) Ôx′f(x′)

〉
, (8)

where pointy brackets denote expectation w.r.t. to NN parameters. This gives rise to the problem
of finding pairs of probability density functions p(θ) for weights and biases and activations h such
that the physics-consistency condition for the NN eq. (8) is satisfied. This implies that the choice
of activation and prior cannot be simply treated separately. The choice of prior p(θ) and activation
h in the infinite-width limit of eq. (6) is then analogous to the choice of the prior covariance matrix
M and basis functions ϕ in the Mercer representation of the GP kernel in eq. (5). By applying the
kernel trick to Green’s functions, it follows from the choices Mij = σvi

δij (Dirac-Delta), Gaussian
priors, and the limit p(wk) = lim

σwk
→0

N (0, σ2
wk

Σ) (where Σ is diagonal), that h → ϕ. That means,

the activations become the Green’s functions [20].

2.4 Training and regularization with physics-information

Given pairs of input-output data D = {x(d), y(d)}Nd

d=1, where y(d) = f(x(d)) + ε are noisy observa-
tions, we ought to choose optimization criteria for the ML training parameters θ. E.g. here

θ∗ = argmin
θ

[
Nd∑
d=1

(
y(d) − f(x(d))

)2

+ λ

Np∑
p=1

∥∥∥(Ôxf(x)
)∣∣∣

x=x(p)

∥∥∥] , (9)
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which consists of the likelihood (”data term”) and a ”prior” (”physics-loss”) defined via the residual
of eq. (2). The last term denotes the differential operator Ô to be applied to f and then evaluated at
pivot points x = x(p) (which may be distinct from the data points x(d)). This so-called ”residual”
is then minimized conjointly with the data mistfit. The choice of λ and {x(p)}Np

p=1 is non-trivial. A
NN trained this way is often called a Physics-Informed NN (PINN).

3 Experiment

We consider a Helmholtz equation
(∇2 − c2)f(x) = 0 (10)

where c = 6.0 is a constant parameter related to the wavenumber. We restrict ourselves to 1D, i.e.
∇ ≡ ∂2

∂x2 . Then, the fundamental solution to this equation is a sinusoidal function. The physics-
consistent GP kernel for this physical law in 1D has the form k(x, x′) = cos

(
α(x − x′)

)
[2] with

parameter α ∈ R. Since cos
(
α(x − y)

)
= sin(αx) sin(αy) + sin(αx + ∆) sin(αy + ∆) with

phase ∆ ∈ R [20], one particular activation that defines an infinite NN with the same physics-
consistent covariance is a sinusoidal activation function, h(·) := sin(·). We learn NNs f(x) from
noisy observations (Gaussian, variance 0.042, homogeneous), and compare three distinct NNs: All
three models are single-layer with the structure introduced before with N = 100 neurons in the
hidden layer. Note the crucial assumptions are on the priors and not the likelihood. We denote as
“vanilla” a simple NN with a sigmoid-activation, and training with L2-loss. We denote as “physics-
informed” the same network where the training is additionally regularized through a physics-loss
term as in eq. (9). We compare the generalization behaviour of the three NNs in Fig. 2.

Figure 2: Plot of training (left, solid lines) and test error (dashed lines) convergence, and corre-
sponding data & solutions (right). ‘Vanilla’ (green) refers to an ordinary single-layer NN with 100
neurons with sigmoid activations. ‘Physics-informed’ (blue) refers to the same NN but with ad-
ditional training regularization by the usual corresponding physics-loss at the training (circle) and
test (triangle) pivots (see eq. (9) as in [18]. ‘Physics-consistent’ (red) refers to again the same NN
but with physics-based activations (sinus, cf. [20]) that has been derived from an infinite NN cor-
responding to its physics-consistent GP. We used ADAM with learning rate 10−3 and loss weight
λ = 1. Clearly, a vanilla NN does not generalize well, is un-physical outside the data range and can
overfit. In contrast, the PINN generalizes much better at the expense of training accuracy and con-
vergence rate. Finally, the physics-consistent NN too generalizes much better, but converges about
1.5-2 orders of magnitude faster with less hyperparameter tuning. Error shown beyond iteration
stopping for visualization. (right) Black, red & blue almost overlap.

4 Conclusion

Infinite NNs may provide a new avenue to incorporate prior physics knowledge into an NN’s archi-
tecture via their corresponding physics-consistent GP. While the approach is generally non-trivial
and yet limited to linear equations, the advantages in terms of convergence & generalization can
be substantial in data-scarce problems. For future work, algorithmic approaches [15] to construct
specialized, linearly constrained GP kernels may also be applicable to their infinite NN.
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