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Abstract

Data assimilation addresses the problem of identifying plausible state trajec-
tories of dynamical systems given noisy or incomplete observations. In geo-
sciences, it presents challenges due to the high-dimensionality of geophysical
dynamical systems, often exceeding millions of dimensions. This work assesses
the scalability of score-based data assimilation (SDA), a novel data assimila-
tion method, in the context of such systems. We propose modifications to the
score network architecture aimed at significantly reducing memory consump-
tion and execution time. We demonstrate promising results for a two-layer
quasi-geostrophic model. The code for all experiments is made available at
https://github.com/francois-rozet/sda.

1 Introduction

N -layer quasi-geostrophic (NLQG) models [1] are special cases of the Navier-Stokes equations that
have been extensively used to describe the dynamics of oceans and atmospheres. NLQG models
consider a stratified fluid of N superimposed layers of constant uniform densities; the layers being
stacked according to increasing density. The state of the fluid is fully described by the potential
vorticity field q and the velocity fields (u, v) of each layer. In practice, it is necessary to discretize
temporally and spatially to solve/integrate the quasi-geostrophic equations, which leads to physical
phenomena occurring at a smaller scale than the numerical resolution to be missed [1–4]. In the long
run, neglecting such phenomena can lead to poor simulations. It is therefore common to simulate
such models at high temporal and spatial resolutions to ensure the quality of the simulations, but this
comes at a significant computational cost.

Although they make (shallow water) assumptions to neglect some terms of the Navier-Stokes equa-
tions, NLGQ models effectively capture the characteristic features of turbulent ocean systems, such
as jet streams, mesoscale eddies, and ocean currents. As such, they are good candidates for designing
and benchmarking data assimilation (DA) [5–11] algorithms. Formally, DA targets the problem of
inferring the posterior distribution

p(x1:L | y) = p(y | x1:L)

p(y)
p(x1)

L−1∏
i=1

p(xi+1 | xi) (1)

of discrete-time state trajectories x1:L = (x1, x2, . . . , xL) given an observation y resulting from
an observation process p(y | x1:L). In geosciences, the physical model underlying transition
dynamics p(xi+1 | xi) is typically well known and the observation process is generally formulated
as y = A(x1:L) + η, where A is the measurement function and η is a stochastic additive term that
accounts for instrumental noise and systematic uncertainties.

In this setting, the simulation quality is very important as it strongly impacts the relevance of inference
results. Unfortunately, high resolutions rapidly become a computational burden for classical DA
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algorithms, such as variational methods [5–9] that require to repeatedly differentiate through the
physical model, and Monte Carlo methods [12–15] that conduct large numbers of simulations.

Conversely, score-based data assimilation (SDA) [16], a novel DA method drawing its roots from
score-based generative modeling, only relies on the physical model to generate training data. After
training, inference can be carried out without relying on the model and at lower temporal and spatial
resolutions. However, applying SDA to (very) high-dimensional systems remains an engineering
challenge, which we attempt to address in this work.

2 Background

Score-based generative modeling has shown remarkable capabilities, powering many of the latest
advances in image, video and audio generation [17–21]. In this section, we shortly review score-based
generative models and outline how they can be used for solving data assimilation problems with SDA
[16].

Continuous-time score-based generative models Adopting the notations of Rozet et al. [16],
samples x drawn from a distribution p(x) are progressively perturbed through a continuous-time
stochastic diffusion process. This process determines a series of marginal distributions p(x(t)) from
t = 0 to t = 1 for which p(x(0)) ≈ p(x) (clean data) and p(x(1)) ≈ N (0, I) (pure noise). By design,
the diffusion process can be “reversed” in order to transform noise x(1) ∼ N (0, I) into data samples
x(0) ∼ p(x(0)). However, this reverse process requires access to the quantity ∇x(t) log p(x(t))
known as the score of p(x(t)).

A score network is a neural network sϕ(x(t), t) trained – usually by denoising score matching [22,
23] – to approximate the score ∇x(t) log p(x(t)). After training, a score network can be plugged into
the reverse process as a substitute for the true score in order to generate data samples from p(x(0)).
A handy property of score-based models is that, under some assumptions on the likelihood p(y | x),
it is possible to approximate the posterior score

∇x(t) log p(x(t) | y) = ∇x(t) log p(x(t)) +∇x(t) log p(y | x(t)) (2)

without retraining the score network sϕ(x(t), t), and hence to generate data samples from p(x(0) | y).

Score-based data assimilation In score-based data assimilation, the data we try to model are
trajectories x1:L and we therefore approximate the trajectory score ∇x1:L(t) log p(x1:L(t)). Rozet
et al. [16] show that an element ∇xi(t) log p(x1:L(t)) of the trajectory score can be approximated
locally by ∇xi(t) log p(xi−k:i+k(t)) for some k ≥ 1. They therefore propose to train a local score
network sϕ(xi−k:i+k(t), t) to approximate the score over short segments, and compose this local
score at inference to generate arbitrarily long trajectories. In addition, the authors introduce a novel
approximation for the likelihood score ∇x1:L(t) log p(y | x1:L(t)) in the assumption of a Gaussian
observation process p(y | x1:L) = N (y | A(x1:L),Σy), which covers many observation scenarios.
Finally, to prevent approximation errors from accumulating along the simulation of the reverse
process, Rozet et al. [16] perform a few Langevin Monte Carlo corrections between each step of the
discretized reverse process.

3 Task

Although the Kolmogorov system presented in the experiments conducted by Rozet et al. [16] is
high-dimensional (tens of thousands of dimensions) compared to what is approachable with classical
posterior inference methods, it remains small in comparison to the millions of dimensions of some
operational DA systems.

In this study, we attempt to perform data assimilation for a two-layer quasi-geostrophic (2LQG)
model. We choose a torus-like 1000 km periodic domain, discretized into 256×256 spatial bins. The
state is described by the potential vorticity field ql and the zonal and meridional velocity fields ul and
vl for each layer l ∈ {1, 2}. A state snapshot x = (q1, u1, v1, q2, u2, v2) is therefore a 256 × 256
grid with 6 channels, which exceeds the dimensionality of Rozet et al. [16]’s Kolmogorov system by
a factor 48.
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We use the pyqg [24] Python library to solve the quasi-geostrophic equations using pseudo-spectral
methods. To ensure the quality of the simulation, the domain is discretized into 512× 512 spatial
bins and the integration timestep is set to 15min. We coarsen the simulation to the target resolution
(256× 256) afterwards and separate two snapshots xi and xi+1 by a day (24 h). To ensure that the
system has reached statistical stationarity, that is p(xi) = p(xi+1), it is simulated for 5 years starting
from random initial conditions before saving the first state x1 [2–4].

4 Architecture

The high-dimensionality of the task at hand (and operational DA systems) introduces many engineer-
ing challenges. Notably, naively scaling the U-Net [25] inspired score network architecture proposed
by Rozet et al. [16] to our task results in memory consumption exceeding the total memory of a
A5000 GPU (24GB) when training on segments, which gets worse at inference on full trajectories.
We propose several modifications to the architecture to address these problems, avoiding low-level
tricks such as custom CUDA kernels.

First, at inference, except for the extremities of the trajectory, only the k + 1-th element of the local
score network’s output is actually used. The other elements are therefore wasting both memory and
compute resources. Instead, we make the score network fully-convolutional in the time axis, such that
it can be applied to trajectories of any length. However, we limit its temporal receptive field such that
it can still be trained on short segments. To do so, we make all layers 2-D spatial convolutions (no
mixing along the time axis) and strategically add a few (2k) 1-D temporal convolutions. Assuming
the same number of channels per state, this modification roughly reduces the amount of memory
consumed and computation performed at inference by a factor 2k + 1.

Still, training on segments of 256 × 256 grid states consumes a lot of memory. To solve this, we
combine two ideas: gradient checkpointing and inverted bottleneck blocks. Gradient checkpointing
[26, 27] is an automatic differentiation trick that consists in only keeping in memory some intermediate
values of the computation graph, instead of all. The missing values are recomputed during the
backward pass, effectively trading memory consumption for execution time. Inverted bottleneck
blocks [28, 29] consist in limiting the number of channels of a convolutional network except within
residual blocks where the number of channels is expanded to perform non-linear computations and
contracted back afterwards. By checkpointing only the intermediate values with a limited number of
channels, we are able to reduce memory consumption by 72%, while increasing execution time by
only 27%.

A diagram of the architecture incorporating the proposed modifications is provided in Figure 2.

5 Results

Following Rozet et al. [16], we choose a variance preserving diffusion process for our experiments
and simulate the reverse process in 256 evenly spaced discretization steps and one Langevin Monte
Carlo correction per step. The score networks are trained once and then evaluated under various
observation scenarios.

As described in Section 4, the local score network presents a U-Net [25] inspired architecture with
efficiency-oriented modifications. The temporal receptive field of the score network is such that
k = 4 and, therefore, it can be trained on segments of length 2k + 1 = 9 instead of entire trajectories.
Using pyqg [24], we generate 1024 trajectories of 32 state snapshots, which are split into training
(80%), validation (10%) and evaluation (10%) sets. For practical reasons, the vorticity and velocity
fields (channels) are standardized to have unit variance. We train the score network for 1024 epochs
(48 h on a single A5000 GPU) with the AdamW [30] optimizer and a linearly decreasing learning
rate. Further architecture and training details are provided in Appendix A.

We consider a scenario where weather stations placed regularly over the domain measure the local
velocities (u1, v1, u2, v2) every day for a month (L = 32). We generate an observation y for a
trajectory of the evaluation set. Given the observation, we sample three trajectories with SDA and
find that they closely resembles the original trajectory, as illustrated in Figure 1. A similar experiment
where weather stations are placed randomly upon the domain and with more measurement noise
is presented in Figure 3. In both cases, however, we observe that the generated trajectories exhibit
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less small-scale details than a simulation, which indicates that the score network does not model the
data perfectly. There are several avenues to explore in order to address this issue, such as training
for longer with more data or increasing the capacity (more channels or layers) of the score network.
Fourier neural operators (FNOs) could be another way to make the network more expressive and
have proved to be effective for emulating partial differential equations [4, 31, 32].
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Figure 1: Example of sampled trajectories for a spatially sparse observation. States are visualized by
their potential vorticity field q. Positive values (red) indicate clockwise rotation and negative values
(blue) indicate counter-clockwise rotation. The observation y corresponds to a spatial subsampling
of factor 16 of the velocity fields (u1, v1, u2, v2) with small Gaussian noise (Σy = 0.012I). SDA
generates trajectories similar to the original one, despite the limited amount of information available
in the observation. The three trajectories present slight physically plausible variations, as expected
from sampling from a narrow posterior. We observe that the trajectories exhibit less small-scale
details than the original one.

Importantly, the three trajectories in Figure 1 were generated concurrently on a single A5000 GPU in
18 minutes and using 14GB of memory. In comparison, naively scaling the original architecture of
Rozet et al. [16] would have required roughly 10 times more compute and 20 times more memory.
With classical data assimilation algorithms, such as variational [5–9] or Monte Carlo [12–15] methods,
we estimate that inference would have required the compute equivalent of thousands of simulations,
each taking roughly 3 minutes to complete using pyqg [24] on 4 CPU cores. In conclusion, we
believe that SDA is ready to be tested in full operational conditions.
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A Experiment details

Resources Experiments were conducted with the help of a cluster of GPUs. In particular, score
networks were trained and evaluated concurrently, each on a single GPU with 24 GB of memory.

Score network The local score network is a U-Net [25] with inverted bottleneck residual blocks
[28, 29, 33], SiLU [34] activation functions and layer normalization [35]. Residual blocks either
operate on the temporal axis or the spatial axes (see Section 4). Gradient checkpointing [26, 27] is
applied to the residual blocks to reduce memory consumption. Other hyperparameters are provided
in Table 1 and a schematic representation of the architecture is provided in Figure 2.

Table 1: Score network hyperparameters for the 2LQG experiment.

Spatial blocks per level (3, 3, 3)
Channels per level (16, 32, 64)
Inverted bottleneck factor 4
Kernel size 5
Padding circular
Activation SiLU
Normalization LayerNorm

Optimizer AdamW
Weight decay 10−3

Learning rate 2× 10−4

Scheduler linear
Epochs 1024
Batch size 4

7



Modulated block

Spatial block

Spatial block

Spatial block

Spatial residual block

LayerNorm

Conv2d (C→4C)

SiLU

Linear (4C→C)

Linear (64→C)

Conv2d (6→16)

Conv2d (16→32, stride 2)

x(t)

Modulated block

Modulated block

Temporal block

Conv2d (32→64, stride 2)

Modulated block

Modulated block

Modulated block

Temporal block

Temporal block

LayerNorm

Upscale x2

Conv2d (64→32)

Temporal block

LayerNorm

Upscale x2

Conv2d (32→16)

Modulated block

Conv2d (16→6)

s(x(t), t)

Temporal block
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SiLU

Linear (4C→C)

h(t)

t

Linear (32→256)

SiLU

sin(ωt) & cos(ωt)

Time embedding

Linear (256→64)
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Figure 2: Schematic representation of the score network architecture. All spatial and temporal blocks
are gradient checkpointed to reduce memory consumption.
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B Assimilation examples
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Figure 3: Example of sampled trajectories for a spatially sparse observation. The observation y
corresponds to a random (uniform) sampling of ±80 bins of the velocity fields (u1, v1, u2, v2) with
medium Gaussian noise (Σy = 0.12I). SDA generates trajectories similar to the original one, despite
the limited amount of information available in the observation. The three trajectories present slight
physically plausible variations, as expected from sampling from a narrow posterior. We observe that
the trajectories exhibit less small-scale details than the original one.
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