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Abstract

Despite the increasing availability of high-performance computational resources,
Reynolds-Averaged Navier-Stokes (RANS) simulations remain the workhorse for
the analysis of turbulent flows in real-world applications. Linear eddy viscosity
models (LEVM), the most commonly employed model type, cannot accurately
predict complex states of turbulence. This work combines a deep-neural-network-
based, nonlinear eddy viscosity model with turbulence realizability constraints as an
inductive bias in order to yield improved predictions of the anisotropy tensor. Using
visualizations based on the barycentric map, we show that the proposed machine
learning method’s anisotropy tensor predictions offer a significant improvement
over all LEVMs in traditionally challenging cases with surface curvature and flow
separation. However, this improved anisotropy tensor does not, in general, yield
improved mean-velocity and pressure field predictions in comparison with the
best-performing LEVM.

1 Introduction

The incompressible Navier-Stokes equations are vital for describing fluid motion at low Reynolds
numbers, impacting fields like aircraft design and ocean current modeling. Turbulent flows are
prohibitively expensive to resolve fully, and engineers often resort to reduced models such as RANS
for efficiency. These models employ closures such as the Launder-Sharma k− ϵ [1] or Wilcox’s k−ω
[2], which rely on linear assumptions, limiting their accuracy in complex flow scenarios. Nonlinear
models have been explored but face challenges. This contribution builds upon the resurgence of
turbulence modeling research, instigated by data-driven approaches [3], in response to the stagnation
seen in the 2000s after earlier advancements.

This work combines additional flow features derived by Wang and colleagues [4, 5] with the neural
network architecture proposed by Ling et al. [6] to give point-based estimates of the anisotropy tensor
appearing in the RANS closure. The training objectives are supplemented by a loss term penalizing
predictions that violate the physical realizability constraints of turbulent states. The trained network
proposed was tested on unseen flow scenarios and used as a source term in the RANS equations to
produce estimates of the mean-flow quantities.
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Figure 1: Barycentric map representing nature of turbulence of RANS k − ω (a) and DNS (b)

2 Physics-Informed Tensor Basis Neural Network

2.1 Reynolds stresses and realizability constraints

The Reynolds stress tensor τij = ⟨uiuj⟩, where ui = Ui − ⟨Ui⟩ arises by time-averaging (mean
indicated by ⟨·⟩) of the Navier-Stokes equations and depends on the fluctuations ui of the velocity
field Ui. It can be decomposed into an isotropic δij and anisotropic aij part which is given by
aij = τij − 2/3kδij .The turbulent kinetic energy k is the trace of the Reynolds stresses.

The anisotropic aij has zero trace, and its normalized version bij is referred to as anisotropy tensor,
i.e.:

bij =
aij
2k

=
τij

⟨ukuk⟩
− 1

3
δij , (1)

The Reynolds stress tensor is a symmetric, positive semi-definite second-order tensor with a non-
negative determinant and trace. Following [7], the physical constraints, known also as realizability
constraints, on the anisotropy tensor are:

−1

3
≤ bαα ≤ 2

3
∀α ∈ {1, 2, 3}, −1

2
≤ bαβ ≤ 1

2
∀α ̸= β. (2)

The barycentric map introduced in [8] uses an eigenvalue decomposition of b to define three funda-
mental states of turbulence. All other states of turbulence can be expressed as a linear combination of
these three limiting states. The limiting states form a triangle of all admissible states; its vertices are
defined by the realizability constraints (2). As demonstrated in Figure 1, each point in the barycentric
triangle corresponds to a unique color. The mapping is given in the supplementary material 6.1.

2.2 Closure Model

While LEVMs assume b to be a linear function of the mean velocity gradient, a more general class of
turbulence models can be formulated when dropping this assumption. The class of algebraic stress
models is formed by nonlinear eddy viscosity models (NLEVM), which determine the Reynolds
stresses from the local turbulent kinetic energy k, the eddy viscosity ϵ, and the mean velocity gradient.
Pope [9] has shown that every second-order tensor that can be formed from the normalized mean rate
of strain Ŝ = ϵ/2k(∇⟨U⟩+∇⟨U⟩T ) and the normalized rate of rotation Ω̂ = ϵ/2k(∇⟨U⟩−∇ ⟨U⟩T )
and fulfills these requirements is a linear combination of ten basis tensors T (n)

ij . The most general
form of a NLEVM is given by

bij =

10∑
n=1

G(n)(λ1, ..., λ5) T (n)
ij (Ŝij , Ω̂ij), (3)

where G(n) are the coefficients of the basis tensors and λk are the tensor invariants dependent on Ŝ

and Ω̂. Ling et al. [6] introduced the Tensor Basis Neural Network (TBNN), which makes use of
modern machine learning methods to learn these functions G(n) from high-fidelity fluid simulation
data. Even though improved results compared to the k − ϵ model were reported, extracting enough
information from these five invariants has proven difficult. This is especially true for flow cases with
at least one direction of homogeneity, where invariants λ3 and λ4 vanish for the entire flow domain.
Proof of this statement is given in the supplementary material 6.2. It is, however, possible to include
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more features from local flow quantities and derive more invariants while still employing the integrity
basis formed by T (n). This work, in part, follows the research of Wang et al. [10], who derived an
extended feature set also considering the gradients of the turbulent kinetic energy and the pressure.
The model was implemented in PyTorch [11] and can be accessed via github.com/pkmtum/PI_TBNN.

2.2.1 Enforcing Realizability Constraints in Training

Ling et al. [6] enforced the realizability constraints in post-processing by simply projecting the points
onto the closest boundary of the barycentric triangle. We propose incorporating these constraints
in the TBNN’s training, which we then colloquially refer to as the Physics-Informed Tensor Basis
Neural Network (PI-TBNN). The inequalities given in Eq. (2) can be transformed into contributions
to the loss function via the penalty method. The additional term reflects inductive bias about the
problem structure and essentially acts as a regularizer. In plain words, if training samples are outside
the domain of realizable turbulence states, the penalty term will force them back in. The constraints
are

c1(b) = min
α

(bαα)− 1/3 < 0 ∀α ∈ {1, 2, 3},

c2(b) = (3|ϕ2| − ϕ2)/2− ϕ1 < 0,

c3(b) = 1/3 − ϕ2 < 0,

c4(b) = 2|b12| − (b11 + b22 + 2/3) < 0,

c5(b) = 2|b13| − (b11 + b33 + 2/3) < 0,

c6(b) = 2|b23| − (b22 + b33 + 2/3) < 0,

(4)

where ϕi denotes the eigenvalues of b in order to distinguish them from the invariants. ϕ1 and ϕ2 are
the largest and second-largest eigenvalues. The penalty term is then given by

L(b̂(λ,θ)) = β

6∑
k=1

max(0, ck(b̂(λ,θ))), (5)

where λ is the collection of invariants, θ are the NN parameters, and b̂(λ,θ) is the predicted
anisotropy tensor. The penalty coefficient β determines its impact on the loss function. The complete
loss function, considering the MSE loss, the regularization, and penalty terms, is given by

E(λi,θ) =
1

D

D∑
i=1

∥b̂(λi,θ)− bi∥+
α

2
∥θ∥22 +

β

D

D∑
i=1

6∑
k=1

max(0, ck(b̂(λi,θ))), (6)

where bi are the high-fidelity responses. The number of data points is denoted D. The coefficient α
controls the degree of L2 regularization.

3 Numerical Results

A total of four flow geometries were used as benchmarks in this work. The flow over periodic
hills (PH) [12], the converging-diverging channel flow (CDC) [13], and the curved backward-facing
step (CBFS) [14]. These exhibit adverse pressure gradients over curved surfaces, leading to flow
separation and subsequent reattachment. The data set was also extended to include the square duct
(SD) flow case [15]. This scenario clearly illustrates the limitations of LEVMs and is well-suited
for investigating the forward propagation of the predicted anisotropy tensor. All flow cases were
replicated in OpenFOAM [16] to obtain the baseline RANS data. The flow case setup is analogous to
[17]. A detailed description of the data sets is given in the supplementary material 6.3.

3.1 Anisotropy Tensor Prediction

The PI-TBNN was tested on flow cases it had not seen during training. They differ either in geometry
or Reynolds number from the training data. Figure 2 compares the anisotropy tensors for square duct
(SD) using the barycentric colormap. Only the TBNN with the extended feature set can accurately
reproduce the state of turbulence for this flow case. A similar picture arises on the PH geometry
in Figure 3, where the k − ω model cannot capture 1C turbulence and axisymmetric expansion at
the top and the bulk of the flow domain, respectively. The PI-TBNN, however, does exhibit such
characteristics. For all test cases considered, the PI-TBNN achieves about 70% reduction of the
RMSE compared to the baseline k − ω model and 50% reduction of the RMSE compared to [6] (see
Table 1).
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Figure 2: Stress types of k − ω (a), PI-TBNN with FS1 (b), FS[1-3] (c), and DNS (d) for SD.

Table 1: RMSE of b from RANS, PI-TBNN, and TBNN predictions for the three test cases.
Flow case LEVM k − ω PI-TBNN, FS1 PI-TBNN, FS[1-3] TBNN Ling [6]

Square duct 0.2175 0.0992 0.0663 0.14
Periodic hills 0.1016 0.0628 0.0419
Curved backward-facing step 0.1173 0.0619 0.0414

3.2 Anisotropy Tensor Propagation

While some applications involving wall shear stress computations may directly benefit from an
improved prediction of b, the quantities of interest are usually the mean velocity and pressure fields.
Hence, with the PI-TBNN model, the Reynolds equations were solved for the mean velocity and
pressure fields. Table 2 shows that the PI-TBNN outperforms the k − ϵ model for the PH and CBFS
geometries by a small margin and yields better in-plane prediction for the square duct flow case. The
most accurate model, however, remains the k−ω model for all three test geometries. Surprisingly, on
the CBFS geometry, the PI-TBNN shows the largest discrepancies in the region of the flow separation,
as can be seen in Figure 4. The k − ω model even beats the mean field resulting from using the
anisotropy tensor from the DNS on the periodic hills test case, indicating that an improved anisotropy
tensor does not necessarily lead to improved mean velocity and pressure fields (behavior also reported
in [18, 19]). Both [6] and [20] reported improvements in the mean-field prediction over a LEVM but
used the k − ϵ as the baseline LEVM, which shows a larger discrepancy from the ground truth than
the k − ω model, i.e. the best performing model of its class.

4 Conclusion

We introduced the PI-TBNN, which extended the TBNN framework with an extensive feature set and
an inductive bias in the form of a physics-informed addition to the loss function. The addition of
features was motivated both analytically—showing that the number of distinct invariants for 2D flow
scenarios is three, not five—and empirically through improved predictions. It has been shown that
the new approach yields more accurate predictions of the anisotropy tensor than the original TBNN
of Ling et al. [6]. The improvements were illustrated with the barycentric colormap and quantified
by comparing RMSEs. It is, however, limited in its predictive capabilities of the mean velocity and
pressure fields. While it still outperformed the widely popular k − ϵ model on geometries with flow
separation, it consistently fails to compete with the k − ω model. The rather large discrepancy of the
RANS using the DNS anisotropy tensor indicates that it is more beneficial to train models that not
only aim at improving predictions of the Reynolds stresses but instead target the mean field quantities
directly, e.g., as in [21, 22, 23].
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Figure 3: Visualization of stress types of LEVM k − ω (a), PI-TBNN (b), and DNS (c)
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Table 2: RMSE of U for RANS with anisotropy tensor from k − ω, k − ϵ, PI-TBNN, and DNS.
Reference velocity fields come from DNS.

Flow case k − ω k − ϵ bPI−TBNN bDNS

Square duct RMSE(U) 0.0496 0.0667 0.0716 0.0322
Square duct RMSE([U2, U3]) 0.0066 0.0066 0.0045 0.0025
Periodic hills RMSE(U) 0.0375 0.0545 0.0541 0.0465
Curved backward-facing step RMSE(U) 0.0609 0.0883 0.0868
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Figure 4: Streamwise mean velocity profiles at specific x-locations of PH (a), and CBFS (b).

5 Broader Impact

Turbulence is a key physical characteristic of a broad range of fluid flows. Understanding this
phenomenon is crucial for complex designs, environmental modeling, and many more engineering
applications. Computational power has increased massively in the past decades, enabling scale-
resolving simulations like direct numerical simulations of a number of canonical turbulent flows.
However, fast approximations like the RANS continue to remain essential for industrial applications,
whose accuracy hinges heavily on turbulence closure models.

The presented research serves as an extension to the state-of-the-art data-driven turbulence closure
model proposed by [6]. By combining a deep neural network with an inductive bias informed by
turbulence realizability constraints, plus an extensive feature set, the PI-TBNN showed considerable
improvements. These improvements showcased through barycentric colormap visualizations and
quantified reductions in RMSE signify a step forward in our ability to capture complex turbulence
states, particularly in scenarios involving surface curvature and flow separation.

However, the study also sheds light on the nuanced relationship between improved anisotropy tensor
predictions and the ultimate goal of predicting mean velocity and pressure fields. While the PI-TBNN
excels in enhancing anisotropy tensor predictions, it does not consistently outperform the established
k − ω model in mean-field predictions, underscoring the need for further exploration in this area.

We do not see any direct ethical concerns associated with this research. The impact on society is
primarily through the over-arching context of research using machine learning to improve our general
understanding of turbulence in fluids.
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6 Supplementary Material

6.1 RGB colormap

As demonstrated in Figure 1, each point in the barycentric triangle corresponds to a unique color. The
mapping from the barycentric coordinates to the RGB values follows[

R
G
B

]
=

1

maxCic

(
C1c

[
1
0
0

]
+ C2c

[
0
1
0

]
+ C3c

[
0
0
1

])
for i ∈ {1, 2, 3}. (7)

6.2 Scalar invariants

Two of the five scalar invariants (λ3, λ4) are zero for flows with one direction of homogeneity. The
two invariants read

λ3 = tr(Ŝ
3
), λ4 = tr(Ω̂

2
Ŝ). (8)

Assuming the flow is homogeneous in z-direction, the partial derivatives of the mean velocity with
respect to z vanish, and the mean rate of strain and rotation read

Ŝij =
1

2

k

ϵ

[
2∂⟨Ux⟩

∂x
∂⟨Ux⟩
∂y +

∂⟨Uy⟩
∂x

∂⟨Uy⟩
∂x + ∂⟨Ux⟩

∂y 2
∂⟨Uy⟩
∂y

]
, Ω̂ij =

1

2

k

ϵ

[
0 ∂⟨Ux⟩

∂y − ∂⟨Uy⟩
∂x

∂⟨Uy⟩
∂x − ∂⟨Ux⟩

∂y 0

]
.

(9)

The incompressibility constraint of the Reynolds equations reduces to

∂ ⟨Ui⟩
∂xi

= tr

(
∂ ⟨Ui⟩
∂xj

)
=

∂ ⟨Ux⟩
∂x

+
∂ ⟨Uy⟩
∂y

= 0. (10)
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When using the simplified expressions of Ŝ and Ω̂ in combination with the incompressibility
constraint, invariant λ3 is given by

tr(Ŝ3
ij) = (11)

k3

8ϵ3
tr

([
Ŝ11(Ŝ

2
11 + Ŝ2

12) + Ŝ12(Ŝ11Ŝ12 + Ŝ12Ŝ22) Ŝ12(Ŝ
2
11 + Ŝ2

12) + Ŝ22(Ŝ11Ŝ12 + Ŝ12Ŝ22)

Ŝ11(Ŝ11Ŝ12 + Ŝ12Ŝ22) + Ŝ12(Ŝ
2
12 + Ŝ2

22) Ŝ22(Ŝ
2
12 + Ŝ2

22) + Ŝ12(Ŝ11Ŝ12 + Ŝ12Ŝ22)

])

=
k3

8ϵ3

Ŝ11(Ŝ
2
11 + Ŝ2

12) + 2Ŝ2
12 (Ŝ11 + Ŝ22)︸ ︷︷ ︸

=0

+Ŝ22(Ŝ
2
22 + Ŝ2

12)

 , (12)

=
k3

8ϵ3

(
Ŝ11(Ŝ

2
11 + Ŝ2

12) + Ŝ22(Ŝ
2
11 + Ŝ2

12)
)
, (13)

=
k3

8ϵ3

(Ŝ11 + Ŝ22)︸ ︷︷ ︸
=0

(Ŝ2
11 + Ŝ2

12)

 = 0. (14)

The derivation of invariant λ4 is more straightforward and thus written in terms of the mean velocity
gradient. It is given by

tr(Ω̂2
ijŜjk) = tr

 k3

8ϵ3

(
∂ ⟨Ux⟩
∂y

− ∂ ⟨Uy⟩
∂x

)2

 2∂⟨Ux⟩
∂x

∂⟨Ux⟩
∂y +

∂⟨Uy⟩
∂x 0

∂⟨Uy⟩
∂x + ∂⟨Ux⟩

∂y 2
∂⟨Uy⟩
∂y 0

0 0 0


 (15)

=
k3

4ϵ3

(
∂ ⟨Ux⟩
∂y

− ∂ ⟨Uy⟩
∂x

)(
∂ ⟨Ux⟩
∂x

+
∂ ⟨Uy⟩
∂y

)
︸ ︷︷ ︸

=0

= 0. (16)

6.3 Data set

The high-fidelity direct numerical simulation (DNS)/large eddy simulation (LES) data are used for the
training. Out of the two available DNS for the CDC, the one at Re = 7900 was used for estimating
the regularization parameters. The higher Reynolds number simulation at Re = 12600 was used for
training and validation, along with the DNS at Re = 2800 and LES at Re = 10595 for PH and the
DNS for SD at Re = {2000, 2400, 2900, 3200}. The data set was split into training and validation
sets at a ratio of 70/30. Therefore, the total number of data points available for training was 26600.

The testing set consists of three flow geometries (SD, PH, and CBFS). Two of these geometries,
SD and PH, are also part of the training and validation set, however, at different Reynolds numbers.
The periodic hills case at Re = 5600 was selected to investigate the interpolation properties — the
ML model has previously seen this flow geometry and is expected to yield good predictions. The
square duct is a canonical flow case that clearly illustrates the deficiencies of the LEVMs and is
suitable to present difficulties of propagating the Reynolds stresses to the flow field. Finally, the
curved backward-facing step tests the ML model’s extrapolation capabilities.
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