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Abstract

The ability of deep neural networks to generalize over a large diversity of function
modeling tasks, remains a key mystery of the field. While the workings of the
network are fully known, it remains unclear which specific properties are necessary
and/or sufficient for the observed generalization. In this paper, we approach the
characterization of this generalization by studying the ability to learn the evolution
of discrete dynamical systems. Our findings reveal a strong correlation between the
number of examples needed for generalization and the sensitivity of the dynamical
systems to perturbations of the initial state.

1 Introduction

In recent years, it has become clear that deep learning architectures can model a large set of naturally
occurring systems. However, basic machine learning theory tells us that there have to be limits, and
only systems aligned with the inductive bias of the network are efficiently learnable, i.e., learnable
from realistic amounts of data. In order to understand this inductive bias better, we study learning
of dynamical systems — based on the premise that natural processes follow physical dynamics. [Lin
et al.,2017]]

In order to experimentally investigate which dynamical systems are hard to learn, we choose a limited
but expressive subset of discrete dynamical systems to model. To align with physical models, we
limit ourselves to local,time-invariant and translation-invariant systems. Together with discreteness,
these conditions coincide with the set of Cellular Automata (CA) [Hedlund, [1969].

Fully investigating CAs with a rather small number of inputs is already impractical, as the required
space for encoding a single rule rises exponentially with the number of input parameters. On the
other handy, specifying such rules implicitly introduces a large bias by favoring rules that are simple
to encode implicitly. Instead we decided to investigate the subset of larger 2D CAs that are produced
by repeated applications of smaller automata.

We explore under which conditions a fixed architecture will be able to easily learn to predict the
k-step time evolution of such a CA, by training a large number of networks on different, randomly
sampled rules. Our results suggest, that learnability correlates with the perturbation sensitivity of
the function to be learned, i.e., the likelihood that small changes in the (2n+1)-by-(2n+1) input lead
to changes in the output bit. This finding is a novel addition to previous studies on the network’s
perturbation sensitivity, the training process, or function class capacity characterizations such as
through Rademacher or Lempel-Ziv complexity.

2 Background and Related Work

The exploration of the “prior of deep learning” has been multifaceted, encompassing various models
and approaches to understand different aspects. The classical approach of infinite-width limit
linearization, brought to light by [Neal,|1996| Jacot et al., 2018} |Lee et al., 2018]], has been instrumental

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



in providing insights and revealing a Gaussian prior distribution in function space. Despite its
foundational insights, particularly on generalization behavior [Belkin et al.| 2019], the limitations
[Roberts et al., 2022} [Li et al., 2019]] of this model accentuate the need for further exploration into the
capabilities of deep networks.

Examining the intrinsic dimensionality and the complexity of data [Pope et al., 2021} [Huh et al., 2023]
Nakkiran et al.l|2019]] shows the effectiveness and learning constraints of neural networks, suggesting
that neural networks tend to favor "simple" functions first, partially providing an explanation for their
generalization performance on natural data.

The emergence of studies focusing on the artificial data-generating mechanisms [Pérez et al., 2018,
Mingard et al.||2019, [2023| [Bronstein et al., | 2022]] underscores the biases of neural networks towards
simpler, low entropy Boolean functions, aligning with our observations on low perturbation sensitivity
and learnability. Additionally, research utilizing 2D CAs as model systems [Gilpinl 2019} |Springer|
and Kenyon, 2021} [Lin et al., 2017] demonstrates the relationship between learnability, rule entropy,
and the complexity emerging from iterated simple rules, providing complementary insights and
highlighting unique learning challenges in different system models.

3 Methods

Let f; be the local update rule for some (2n+1)-by-(2n+1) 2D Cellular automaton. f; is then of the
form f; : {0,1}2n+D*x(2n+1) _, 10 1}, Even for small values of n, arbitrary functions of this type
are not learnable. For example, to specify a single function for n = 3, i.e. a 7-by-7 CA, we would
need to specify the output for each single of the 27%7 input patterns, which would require 70TB of
disk space — infeasible for systematic investigation using modern architectures.

For this reason we investigate only rules that can be defined as repeated applications of smaller 3-by-3
automata. While our problem is still complex, the underlying data generation process is simpler.

We separately investigate both random 3-by-3 automata and outer-totalistic (OT) automata. This
subset, often called "life-like" automata, are not only translation invariant, but also rotation invariant.
Further, there are "only" 262.144 different OT automata, making it possible to learn a representative
fraction.

As we want to investigate learnability for repeated rules, we need to guarantee that our network is
able to represent the provided functions. In order to do so, we design our architecture the following
way: We create a module that is able to model a single iteration of any 3-by-3 CA, by using a 3-by-3
Conv?2D filter, followed by several 1-by-1 Conv2D filters. All filters are separated by a ReLU function
followed by Batchnorm2D. We then stack such modules, until there are as many as the number of
iterations we want to predict. The modules do not share weights, as we do not want to bias the
network towards learning a simple repeated rule. All our Conv2D filters use cyclic padding to ensure
that the input and output shapes of the network are equivalent. For a graphical representation of our
model, see

Since each module is able to model a single application of a 3-by-3 rule, we know that the whole
network is able to represent repeated applications of the rule. Note that this architecture is very
similar to the ones used by |Gilpin| [2019] and [Springer and Kenyon|[2021]], providing comparability
with previous works in the literature.

We examine the ease with which such a network can learn arbitrary CA rules, a task which we find to
depend strongly on a single value calculable from the transition function of the automaton:

Definition 1 Ler f; be a local transition map of a binary discrete dynamical system f; : {0,1}" —
{0,1}. Let U(x) denote all immediate neighbors of x, i.e U(x) = {y € {0,1}"||z —y| = 1}.
Perturbation Sensitivity (PS) is then defined as:

PS(f) = Eecto1y [Eyev @) f () — f(y)l]

PS represents the probability that a specific output pixel will change if a random input pixel in the
"perceptive field" is altered. It is a measure of unpredictability and can vary considerably between
single and repeated applications of the same rule. PS is maximized at a value of 1 for the parity
function, and minimized at O for constant functions. A random function (i.e. a function where
neighboring inputs have no output correlation) has a PS of around 0.5.



[State after k Stesz Error Rate vs Perturbation Sensitivity for different iterations

T 0.6 1 Tterations
2

[ Conv2d(kernel:1x1, channels:2) J 0.5 1

!

[ Conv2d(kernel:1x1, channels:w) }

o
-

Error Rate
IS
o

o

[Convzd(kernelzlu, channels:2w)]} d copies )~ k copies

[Conv2d(kernel :3x3, channels: 2w)J

cas 0.0 0.1 0.2 0.3 0.4 0.5
Initial State Perturbation Sensitivity

¢

(Figure 1a) Neural network architecture used in (Figure 1b) Error rate for different training runs.
our experiments. Most experiments use w = 256 Each dot represents training of a neural network to
and d = 4. All filters are separated by a ReLU predict a random OT rule, given up to 2%¢ differ-
activation function, followed by a BatchNorm2D ent input samples, colored by number of timesteps
layer. Note that weights are not copied or shared. to predict. Higher perturbation sensitivity leads

to an increase in error rate in each subexperiment.
Solid lines represent a LOESS with 95% confi-
dence Interval, calculated using scikit-misc.

4 Experiments and Results

To investigate how easily a given rule can be learned, we train a neural network to predict the result
of applying that rule k times.

In we show how PS correlates to the error rate after training. While relatively noisy, we
can see that an increase in PS is accompanied by an expected increase in the error rate. Further, we
can see that our architecture is indeed strong enough to theoretically represent these functions, as
rules with £ = 2 converge to a very low error rate.

In order to see how PS influences behavior during training, we track the number of errors for new
training samples. As each presented sample is a newly generated input from the data distribution,
these values are equivalent to generalization performance at each training step. To reduce noise, we
train 2880 different automata for £ = 2 and k& = 3.

For k = 2, we present the networks with 2048 batches, each consisting of 4 patterns of size 8 x 8,
resulting in a maximum of 219 different input-output pairs. For k = 3, we present the networks with
2048 batches, each consisting of 16 randomly sampled 32 x 32 patterns, resulting in a maximum of
225 different input-output pairs. In both cases, the number of samples is significantly less than the
theoretical number of distinct input patterns, but the number of gradient steps remains the same.
We observe that for £ = 2 and k = 3 using our standard network architecture, PS strongly correlates
with both speed of convergence and final performance. Rules with lower PS are easier to learn, while
rules with higher sensitivity are harder, and with high enough sensitivity do not even converge to
a good result during our training. The dependency between training speed and PS seems almost
exponential: Trying to learn rules with a PS larger than ~ 0.3 quickly becomes much harder. This
dependency exists both for k = 2 and k = 3.

It might be the case that these results are an artefact of choosing simple OT rules to generate data.
We therefore repeat this experiment using non-OT rules. We again sample 2880 different rules using
the sampling scheme described above. Results are similar, but slightly less smooth compared to OT
automata. Increasing PS still increases error rate and far more samples are needed to obtain similar
performance. We also compare our result to different architectures. If a single larger convolution is
used instead of several 3-by-3 convolutions, performance suffers. While we still see a clear connection
between PS and error rate during training, but in this case the error rate changes are less pronounced.
Results for all experiments can be seen in Figure 2}
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Figure 2: Evaluated performance during training. Plots show the mean behavior of rules with
similar perturbation sensitivity. We display the evolution of the error rate for new batches during
training. A clear correspondence between PS on the y-axis, and training behavior can be seen for each
experiment. The number of samples needed to achieve similar generalization performance seems
to rise exponentially with perturbation sensitivity, and a clear seperation in learnability is visible:
Small changes in PS can have large impact on learnability. The only exception is the plot in the lower
right corner, where we used a different architecture for comparison (One module with 5x5 conv filter,
instead of two 3x3 modules).

5 Discussion

In this work we investigated the connection between learnability of repeated application of a discrete
dynamical transition function — in this case provided by cellular automata — and a measure called
Perturbation Sensitivity. We found that rules with lower Perturbation Sensitivity are in general easier
to learn and generalize, with most experiments showing an exponential dependency between number
of samples needed and Perturbation Sensitivity.

While this is a complementary result to previous findings on the inductive bias of deep networks, we
consider this a first step towards characterizing the properties that make dynamical systems learnable
and a better understanding of the generalization capabilities of deep neural networks.
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