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Abstract

Orbital-free density functional theory (OF-DFT) provides an alternative approach
for calculating the molecular electronic energy, relying solely on the electron
density. In OF-DFT, both the ground-state density is optimized variationally to
minimize the total energy functional while satisfying the normalization constraint.
In this work, we introduce a novel approach by parameterizing the electronic
density with a normalizing flow ansatz, which is also optimized by minimizing the
total energy functional. Our model successfully replicates the electronic density
for a diverse range of chemical systems, including a one-dimensional diatomic
molecule, specifically Lithium hydride with varying interatomic distances, as well
as comprehensive simulations of hydrogen and water molecules, all conducted in
Cartesian space.

1 Introduction
Unlike Kohn-Sham density functional theory (KS-DFT), which relies on molecular orbitals [1],
Orbital-free density functional theory (OF-DFT) offers a distinctive computational approach within
quantum chemistry and condensed matter physics.
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Figure 1: MEP for ρM(i) computed at different iterations i. ρ̂M and ρ0 are defined in the main text.
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It finds its roots in the Hohenberg-Kohn theorems [2, 3], which unequivocally establish that the
ground-state properties of a many-electron system can be ascertained through the minimization of
an energy functional, denoted as E[ρ], that operates solely on the electron density, ρ. This approach
renders OF-DFT especially advantageous when grappling with vast and intricate systems, making it a
valuable tool with wide-ranging applications in materials science [4].

For a system with N electrons subjected to an external potential (vext), the total energy functional is
defined as E[ρ] = F [ρ] +

∫
vext(x)ρ(x)dx [2, 3]. F [ρ] represents the universal functional, with its

precise form remaining unknown. Common approximations rely on kinetic (T [ρ]) and potential (V [ρ])
energy contributions, the specific forms of which also remain elusive. Numerous proposed functionals
aim to approximate T [ρ] [4–7], and machine learning (ML) algorithms have been employed for this
purpose [8–12]. In contrast, within the context of KS-DFT, T [ρ] is approximated as the sum of
non-interacting particles [1, 3]. Researchers are continuously refining OF-DFT methods to enhance
accuracy and broaden their applicability.

In OF-DFT, the ground-state density is found by solving a constrained optimization problem,

min
ρ(x)

E[ρ(x)]− µ

(∫
ρ(x)dx−Ne

)
s.t. ρ(x) ≥ 0, (1)

where µ, also known as the chemical potential, acts as the Lagrange multiplier associated with the
normalization constraint on the total number of particles (Ne). These constraints, which enforce
both positivity and normalization, ensure the attainment of physically valid solutions. Typically,
conventional methods for solving for ρ involve self-consistent procedures based on functional
derivatives, leading to the Euler equation δE[ρ(x)]/δρ(x)− µ = 0 [3].

To represent molecular densities in real space, grid-based models are commonly employed [13–17].
An alternative real-space formulation was proposed by Chan et al. [18], which involves expressing
the density as a linear combination of Gaussian basis functions (ηi), denoted as φ(x) =

∑
i Ciηi(x),

and ensuring positivity through ρM(x) = φ2(x). Both approaches, mesh and basis set, do not
guarantee the normalization constraint; however, the latter method assists in the computation of
essential integrals required for estimating functional derivatives and other relevant quantities.

In the present work, we present an alternative constrain-free approach to solve for the ground-state
density using normalizing flows (NF).

2 Proposed Method
Our method consists of parametrizing the electronic density ρ(x) with a Normalizing Flow. NFs are
probabilistic models capable of transforming a simple density (ρ0) into a potentially more complex
target distribution, using the change of variables formula,

ρϕ(x) = ρ0(z) |det∇zTϕ(z)|−1
, (2)

where Tϕ(·)1 is a bijective transformation, and ρ0(z) is the base distribution of the flow-based
model. Eq. (2) guarantees the preservation of volume in the density transformation. To have a valid
flow, we must have access to samples from ρ0 and its probability density function (PDF) should
be differentiable for optimization. A common approach is to parametrize T(·) through a composition
of functions; Tϕ(·) = TK(·) ◦ · · · ◦ T1(·) [19–21]. These composable transformations can be
considered as a flow discretized over time. A continuous-time formulation was proposed by Chen
et al. [22], referred to as continuous normalizing flows (CNF). This framework is centered around
the computation of the log density and T(·) through an ordinary differential equation (ODE),

d
dtz(t) = gϕ(z(t), t), and d

dt log ρ(z(t)) = −∇ · gϕ, (3)

where “∇·” denotes the divergence operator. In this work, gϕ(·) is a neural network composed of
three hidden layers each with 512 neurons and the hyperbolic tangent activation function. Other
architectures were tested but found to be sub-optimal.

Here, we reframe the OF-DFT variational problem as a Lagrangian-free optimization problem for
molecular densities in the real space by parameterizing ρM(x) with a CNF (ρϕ(x)). Since the
molecular density normalizes to Ne, we define ρM(x) as, ρM(x) := Ne ρϕ(x), guaranteeing the
satisfaction of the normalization constrain. ρϕ(x) is also known as shape factor [3, 23].

1Tϕ : RD −→ RD an invertible and differentiable transformation.
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The value of any functional that conforms to the total energy functional (E[ρM]) can be rewritten in
terms of an expectation over ρϕ,

F [ρM] =

∫
f(x, ρM,∇ ρM) ρM(x)dx = (Ne)

p Eρϕ
[f(x, ρϕ,∇ρϕ)], (4)

where (Ne)
p is the constant factor related to the number of electrons, and f(x, ρϕ,∇ρϕ) is the

integrand of the functional F [ρM]. All functionals are estimated with Monte Carlo, where the
samples are drawn from ρ0(z) and transformed by a CNF, x = Tϕ(z) := z+

∫ T

t0
gϕ(z(t), t)dt.

Similar to any variational protocol in many-body physics, the minimization of total energy can be
done through gradient-based algorithms using automatic differentiation (AD) [24–27]. AD for
OF-DFT with grids was proposed by Tan et al. [28]. For all the results presented here, ρ0(z) is a
Gaussian distribution with an identity covariance matrix. We found the RMSProp [29] algorithm with
a learning rate of 3 × 10−4 to be the most appropriate optimizer. Code was developed using JAX
Ecosystem [30, 31]. The code is available in the following GitHub Repository.

3 Results
In this section, we present the results for a one-dimensional model for diatomic models, specifically
LiH, and the simulations for hydrogen and water molecules.

3.1 1-D model for diatomic molecules
Based on [32] work, we considered a one-dimensional model for diatomic molecules where the total
energy functional is defined as,

E[ρM] = T [ρM] + VH[ρM] + Ve-N[ρM] + EX[ρM]. (5)

The total kinetic energy is estimated by the sum of the Thomas-Fermi (TF)
(Eq. 6) and Weizsäcker (Eq. 7) functionals [3]; T [ρM] = TTF[ρM] + TW[ρM].

TTF[ρM] =
3

10
(3π2)

2
3

∫
(ρM(x))5/3 dx (6) and TW[ρM] =

λ

8

∫
(∇ ρM(x))2

ρM
dx, (7)

where the phenomenological parameter λ was set to 0.2 [18]. For one-dimensional sys-
tems TTF is TTF[ρM] = π2/24

∫
(ρM(x))

3
dx [32] and TW and EX have the same analytic

form as in Eqs. 7 and 11 respectively. We rewrite TW[ρM] in terms of the score function;
TW[ρM] = λ

8

∫
(∇ log ρM(x))

2
ρM(x)dx, and in the CNF framework it can be computed by

solving,
d
dt∇ log ρϕ = −∇2gϕ − (∇ log ρϕ)

T
(∇gϕ(z(t), t)) , (8)

where ∇2 is the Laplacian operator. This allows us to make use of memory-efficient gradients [33]
for optimizing TW[ρM].

The Hartree (VH[ρM]) potential and the external potential (Ve-N[ρM]) functionals both are defined by
a soft version [32],

VH[ρM] =

∫ ∫
vH(x) ρM(x) ρM(x′)dxdx′ =

∫ ∫
ρM(x) ρM(x′)√

1+|x−x′|2
dxdx′, (9)

Ve-N[ρM] =

∫
ve-N(x) ρM(x)dx = −

∫ (
Zα√

1+|x−R/2|2
+

Zβ√
1+|x+R/2|2

)
ρM(x)dx. (10)

We only consider the Dirac exchange functional [3],

EX[ρM] = −3

4

(
3

π

)1/3 ∫
ρM

4/3(x) dx . (11)

We use the Lithium hydride molecule (LiH) as an example of diatomic molecule modeling in one
dimension. For LiH, we utilize1: Zα = 3, Zβ = 1, Ne = 2 (valence electrons), and various nuclear
distances R. In Fig. 2a, we present ρM for various R values, each one corresponding to the training
of independent CNF models using only 2,000 iterations. Additionally, we display the potential energy
surface curve in Fig. 2b, with the equilibrium bond distance found at Re = 2.95 Bohr [32]. By
exploring different R values, we validate the capability of our CNF ansatz for ρM to parameterize
diverse chemical scenarios, ranging from strong nuclear interactions (R < Re) to bond-breaking
(R ≫ Re). The latter case is found to be challenging for existing DFT methodologies [34]. From Fig.
2a, it is evident that ρM does not distribute electron density along the inter-atomic axis. Fig. 2c we
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(a) LiH density (b) Potential energy surface (c) Tϕ(x(t))

Figure 2: (a) Ground state electronic density of LiH for various inter-atomic distances R. (b) The
value of the potential energy as a function of R is computed with E[ρM] + VNN(R)2. (c) The change
of x(t) and ρϕ(x(t)) through the transformation Tϕ (Eq. 3). For all simulations, ρ0 is a Gaussian
distribution with σ = 1.

(a) H2 density (b) H2 training (c) H2O training

Figure 3: (a) A cross-section of ρM(i) at various iterations i. (b, c) The value of each density
functional throughout the optimization, all values computed using an exponential moving average.

illustrate the transformation ρ0 to ρM through the ODE (Eq. 3). Notably, for R = 10, ρM exhibits a
bimodal distribution, with a higher concentration of electron density nearer to the Li nucleus.

3.2 3-D simulations
To demonstrate the capability to use CNF for real-space simulations, we considered the optimization
of H2 and H2O. For both chemical systems, we considered the same E[ρM] where ve-N(x); ve-N(x) =
−
∑

i
Zi

∥x−Ri∥ . For these simulations, no soft approximation was considered for the VH and Ve-N

functionals.

Fig.1 illustrates the change in ρM through the optimization procedure for H2 and H2O. To further
illustrate the change of ρM from ρ0 by minimizing E[ρM], we computed the molecular electrostatic
potential (MEP); VMEP(x) = ve-N(x) −

∫
ρM(x′)/∥x−x′ ∥dx′. For both systems, ρ0 is a mul-

tivariate Gaussian distribution located at zero, and the last layer of gϕ was initialized to zero. We
compare our results with Hartree-Fock (HF) with STO-3G basis set (ρ̂M). We monitored the value of∫
ρM(x)dx using Becke’s integration Scheme [14]; however, we found no significant difference

w.r.t. Ne,
∣∣∫ ρM(x)dx−Ne

∣∣ < 10−4.

For the hydrogen molecule, the CNF model took 50 iterations to transport the density mass towards
the H nuclei (Fig. 1), R = 1.4 Bohr. After 1,000 iterations we observe no significant difference in
E[ρM] (Fig. 3b) and we observe a higher density around the nuclei compared to ρ̂M, Fig. 3a.

For the optimization of the water molecule (Fig. 3c), our procedure was able to describe the two
electron pairs, characteristic of this chemical system. We can also observe the change on ρ0, a fully
radial symmetric density, to a density with a higher electron density closer to the O atom. We set
the maximum number of iterations to 3,000 with a 512 batch size, however, a ρ0 closer to ρM could
reduce the number of iterations.

1Zi is the atomic number of atom i.
2VNN(R) = ZαZβ/

√
1 +R2
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4 Summary
We have introduced a novel numerical procedure for parametrizing the ground-state energy of molec-
ular densities using normalizing flows within the OF-DFT framework. This approach optimizes ρM
variationally by minimizing the total energy E[ρM], marking it as the first constraint-free method that
ensures both normalization and positivity (Eq. 1). Our study encompasses two types of simulations:
one involving one-dimensional diatomic molecules and another involving a comprehensive real-space
simulation of the H2 and H2O systems.
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