
DeepTreeGANv2: Iterative Pooling of Point Clouds

Moritz A.W. Scham ∗

Deutsches Elektronen-Synchrotron DESY,
Germany

moritz.scham@desy.de

Dirk Krücker
Deutsches Elektronen-Synchrotron DESY,

Germany
dirk.kruecker@desy.de

Kerstin Borras †

Deutsches Elektronen-Synchrotron DESY,
Germany

kerstin.borras@desy.de

Abstract

In High Energy Physics, detailed and time-consuming simulations are used for
particle interactions with detectors. To bypass these simulations with a generative
model, the generation of large point clouds in a short time is required, while the
complex dependencies between the particles must be correctly modelled. Particle
showers are inherently tree-based processes, as each particle is produced by the
decay or detector interaction of a particle of the previous generation. In this work,
we present a significant extension to DeepTreeGAN [1], featuring a critic, that is
able to aggregate such point clouds iteratively in a tree-based manner. We show that
this model can reproduce complex distributions, and we evaluate its performance
on the public JetNet 150 dataset.

1 Introduction

In particle physics, detailed, near-perfect simulations of the underlying physical processes, the
measurements, and the details of the experimental apparatus are state-of-the-art. However, accurate
simulations of large and complex detectors, especially calorimeters, using current Monte Carlo-based
tools such as those implemented in the Geant4 [2] toolkit are computationally intensive. Currently,
more than half of the worldwide Large Hadron Collider (LHC) grid resources are used for the
generation and processing of simulated data [3]. For the future High-Luminosity upgrade of the LHC
(HL-LHC [4]), the computational requirements will exceed the computational resources without
significant speedups, e.g., for the CMS experiment by 2028 [5] projecting the current technologies.
This will become even more demanding for future high-granularity calorimeters, e.g., the CMS
HGCAL [6] with its complex geometry and extremely large number of channels. To address these
challenges, fast simulation approaches based on Deep Learning, including Generative Adversarial
Networks (GAN) [7] and Variational Autoencoders (VAE) [8], have been explored early [9–14] and
deployed recently [15].

∗Also at Jülich Supercomputing Centre, Institute for Advanced Simulation, Germany and RWTH Aachen
University, III. Physikalisches Institut A, Germany

†Also at RWTH Aachen University, III. Physikalisches Institut A, Germany

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.

https://orcid.org/0000-0001-9494-2151
https://orcid.org/0000-0003-1610-8844
https://orcid.org/0000-0003-1111-249X

The majority of these approaches consider the data as voxels living on three-dimensional grids.
Especially for high-granularity calorimeters like the HGCAL, the calorimeter cells are highly irregular,
and the data is often sparse. In such a situation, it is beneficial to consider the data as Point Clouds
(PC), e.g., tuples of cell energies and three-dimensional coordinates, i.e., four-dimensional point
clouds [16–18]. For modelling calorimeter showers, which are cascades of particles, it seems
natural to model the creation of such point clouds as a tree-like process. Such an approach can be
implemented by Graph Neural Networks (GNN) [19] and Graph Convolutions [20]. For modelling
PC data representing three-dimensional objects, a similar approach [21] called tree-GAN [21] exists.
For our use case, especially for modelling the large dynamic range of the energy dimension, this
approach is not sufficient. Here we report on the development of a largely extended Graph GAN
approach, which we named DeepTreeGAN that can be applied to multiple areas of PC generation. To
demonstrate the abilities of our model, we present a first application to the JetNet dataset introduced
in the next section.

1.1 JetNet

In this study, the JetNet [22, 23] datasets are used. Each dataset contains PYTHIA [24] jets with an
energy of about 1 TeV, with each jet containing up to 30 or 150 constituents (here: 150). The datasets
differ in the jet-initiating parton. Here, the dataset for top quark jets is studied. Each dataset contains
about 170k individual jets split as 110k/10k/50k for training/test/validation, where the validation
dataset is used for our results. The jet constituents, the particles, are clustered with a cone radius
of R = 0.8. These particles are considered to be massless and can therefore be described by their
3-momenta or equivalently by transverse momentum pT , pseudorapidity η, and azimuthal angle ϕ.
In the JetNet datasets, these variables are given relative to the jet momentum: ηreli := ηi − ηjet,
ϕrel
i := ϕi − (ϕjet mod 2π), and prelT,i := pT,i/pT,jet, where i runs over the particles in a jet.

Calculating the invariant mass from these relative quantities, for example, for the jet mass, implies
mrel = mjet/pT,jet. This dataset has gained popularity in the particle physics community as a
benchmark for PC-based generative models [16–18, 25–34].

2 Architecture

PC-based GANs [17, 27, 30, 33] frequently choose a refinement approach: Starting with a PC of
the desired size with features sampled from noise, the PC is updated multiple times in the generator
and the critic. In the final step of the critic, the points are aggregated and mapped to a single value,
usually with a feedforward neural network (FFN). In this way, the dimensionality is greatly reduced
in a single step. Commonly, the PC is updated by first transforming the points individually. Then
they are aggregated into a global vector, which is used in-turn to transform the points again. In a
image-based GAN approach like DCGAN [35], the generator would apply convolutions in sequence
to iteratively upscale a random vector to an image and the critic would apply convolutions in sequence
to iteratively downscale an image to a scalar. These convolutions cannot be directly translated to PCs,
which is why the mentioned refinement approach is prevalent for PC-based GANs. Our approach
instead is to translate this principle and to construct a critic that reduces the dimensionality iteratively.
In this way, we complement the DeepTree generator [1], that iteratively upscales PCs.

2.1 Generator

The generator part of this model largely matches the one published in [1], with a few key differences:
Instead of splitting the leaf vector into one part per branch and mapping the latter separately to the
desired number of branches, the full leaf vector is now mapped to the number of branches times
number of features. The generator uses 2, 3, 5, and 5 branches (with a product of 150) and goes from
64 to 33 to 20 to 10 to 3 features. For each event, the number of constituents is sampled from the
dataset and the output of the generator is cut to this size.

2.2 Critic

The critic is shown in Figure 1, its components are described in the following section. It features three
subcritics, that are applied to the different stages of aggregation: The first is applied directly on the
input PC (up to 150 points), the other two are applied after each bipartite pool (pooling to 30 points

2

Input
Bipartite

Pool

Subcritic Subcritic

Embedding Embedding

Bipartite Pool

�ixed number

of trainable

nodes

dense

connections

variable

size

input

Subcritic

Bipartite

Pool

Central Node Update

FFN

FFN

Embedding

FFN CNU

+

Subcritic

CNU

CNU

+

 FFN

Figure 1: The critic, as described in 2.2

and 6 points). The expectation is that the first subcritic provides feedback on the more low-level
features, while the two later subcritics operate on aggregated points and thus provide feedback on
more high-level features. Before the bipartite pool, the embedding layer is applied, which maps the
number of features to 10 and transforms the input.
The critic is conditioned on pT, η and the mass of the jet.

Bipartite Pool For the iterative reduction of the number of points a pooling operation should fulfill
the following conditions: First, it must be differentiable to enable backpropagation. Then it should
be invariant under permutation because the input is permutation invariant. As the number of input
points varies, it needs to accept an arbitrary number of points, down to a single one. The run-time
pooling operation should scale well to large PCs, ideally linear with the number of points. Finally, it
should map to a fixed number of points to construct a regular shaped output tensor, that allows faster
and more convenient implementations. To achieve these requirements, we propose constructing a
bipartite graph, densely connecting the input PC to a fixed number of trainable nodes and applying a
Message Passing Layer (MPL) to this graph. This will return a PC with a fixed number of points.
The dense connection yields a number of edges that equals the number of input points times the
number of trainable nodes. Because each edge yields one message, the run-time of the MPL should
be proportional to the size of the input PC. As an MPL, Gatv2Conv [36] is used with 16 attention
heads, as implemented in PyTorch Geometric [37].
A similar approach has been presented in [38], but implemented as an attention mechanism instead of
an MPL. An advantage of our choice is that the bipartite pool can handle variable sized PCs without
masking.

FFNs The FFNs used in this critic consist of 3 layers with 100 hidden nodes without bias. The first
two hidden layers are followed by a 50% dropout layer and LeakyReLU activation with a negative
slope of 0.1. Spectral normalization [39] is applied to the FFNs, except for the FFN in the embedding
layer, where batch normalization [40] is applied before the activation.

Multi-Aggregation At different stages, the points need to be aggregated in a single vector. This is
commonly done by summing over the points, e.g., [33]. To provide additional information about the
distribution, we compute this vector by concatenating the sum, the maximum, the number of points
and the width. The width of the distribution is estimated by computing the mean absolute deviation:
1
n

∑
i |xi − x̄|.

3

Central Node Update For the following description of the embedding layer and the subcritics, we
define a Central Node Update Layer (CNU): First, the input is transformed with an FFN. Then the
transformed PC is aggregated with the multi-aggregation. Lastly, each of the transformed nodes is
concatenated with the aggregated vector and passed through a second FFN that maps the nodes back
to their original dimension.

Embedding The embedding layer first maps the points independently to 10 features with an FFN
and passes the PC though a CNU layer with a residual connection.

Subcritics Each subcritic is constructed using two CNUs with a residual connection. The points
are then aggregated in the multi-aggregation scheme. This aggregated vector is then concatenated
with the condition (pT, η and mass of the jet) and passed to an FFN, mapping the vector to a single
output. This yields three output values for each event which are summed such that the application of
the loss and the backpropagation takes place for all the outputs in parallel.

2.3 Training

Generator and critic are trained using the Hinge [41] loss, with a ratio of 1 to 2 gradients steps.
The optimizer for the generator (critic) is Adam [42] with β1 = 0.9, β2 = 0.999, a weight decay
of 10−4 and a learning rate of 10−5 (3 ∗ 10−5). Additional to the Hinge loss, the generator is also
trained to minimize the feature matching loss [43] with a factor of 0.1. As an “intermediate layer” the
concatenation of the multi-aggregation of the input PC, together with the output of the embedding
and bipartite pool layers are used.

2.4 Preprocessing & Postprocessing

For the training, the ηrel and ϕrel distributions are scaled separately to a normal distribution. The prelT
distribution is scaled using a Box-Cox transformation with standardizing as implemented in [44]. To
produce samples, the inverse scaling is applied to the output of the generator. The original dataset
is scaled so that

∑
i p

i
T = 1. This feature is difficult to model for the generator, while it is easy to

recognize for the critic. To avoid limiting the performance of the model, the output of the generator is
scaled in the same way.

3 Results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
ou

nt
s/
B
in

×104

Simulation
Model

−0.4 −0.2 0.0 0.2 0.4

0.5

1.0

1.5

M
od

el
Si
m
ul
at
io
n

𝜂rel

@scan_cdr5_fullcopy Step 1632000 epoch 2838 2023-11-13 19:34 #af5e229

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
ou

nt
s/
B
in

×104

Simulation
Model

−0.4 −0.2 0.0 0.2 0.4

0.5

1.0

1.5

M
od

el
Si
m
ul
at
io
n

𝜙rel

@scan_cdr5_fullcopy Step 1632000 epoch 2838 2023-11-13 19:34 #af5e229

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ou

nt
s/
B
in

×105

Simulation
Model

0.00 0.05 0.10 0.15

0.5

1.0

1.5

M
od

el
Si
m
ul
at
io
n

𝑝T
rel

@scan_cdr5_fullcopy Step 1632000 epoch 2838 2023-11-13 19:34 #af5e229

1

0

1

2

3

4

5

C
ou

nt
s/
B
in

×102

Simulation
Model

0.05 0.10 0.15 0.20 0.25

0.5

1.0

1.5

M
od

el
Si
m
ul
at
io
n

𝑚𝑟𝑒𝑙

@scan_cdr5_fullcopy Step 1632000 epoch 2838 2023-11-13 19:36 #af5e229

1Figure 2: The distributions of ηrel, ϕrel, prelT for constituents of the jets and the mass of the jets for
the top-quarks JetNet 150 dataset (Simulation), as described in Section 1.1 and DeepTreeGAN
(Model).

The variables of the constituents and the mass of the top quark dataset are shown in Figure 2. The
generated distributions of the constituents closely match the distribution of the data. While the double
peak structure of the mass distribution is clearly visible, the model is not able to produce the peak
quite as sharp as in the dataset. In Table 1, DeepTreeGAN is compared to other state-of-the-art GANs
and found to be competitive in this context. Diffusion and flow-matching based models [29, 34] have

4

Table 1: Comparison of the proposed DeepTreeGAN to EPiC-GAN [33] and MDMA [27]. The
metrics were computed on a 25k event hold-out sample of the JetNet 150 top quark dataset. The
‘Limit’ row gives the measured in-sample distance by bootstrapping the hold-out dataset. Lower
is better for all metrics. Values taken from [27, Table 1]. The metrics are provided by the JetNet
library [45]. The best performance is printed in bold.

Model WM
1 (×103) WP

1 (×103) WEFP
1 (×105) FPD(×104)

Limit 0.42± 0.09 0.12± 0.04 1.22± 0.32 1.2± 0.6
EPiC-GAN 0.69± 0.08 0.65± 0.03 2.67± 0.39 22± 1
MDMA 0.57± 0.09 0.10± 0.02 2.12± 0.64 5.3± 0.9
DeepTreeGAN 1.49± 0.04 0.13± 0.02 5.01± 0.08 3.4± 0.7

recently provided leading results for the JetNet dataset, but sample production is generally slower
compared to GAN approaches. The DeepTreeGAN code and weights are available on GitHub.3

4 Conclusion

In this work, the DeepTreeGAN model, first introduced in [1], was significantly extended to model
up to 150 jet constituents of the JetNet dataset. To this end, a PC-based critic has been developed,
featuring a pooling operation (Section 2.2), that allows the iterative downscaling of PCs. Through its
significant advantages, this novel pooling implementation may prove useful not only for generative
tasks, but also any PC regression or classification task. This extension represents a significant
milestone in scaling this model to handle even larger point clouds, such as particle showers in
high-granularity calorimeters.

Acknowledgement

Moritz Scham is funded by Helmholtz Association’s Initiative and Networking Fund through
Helmholtz AI (grant number: ZT-I-PF-5-3). This research was supported in part through the Maxwell
computational resources operated at Deutsches Elektronen-Synchrotron DESY (Hamburg, Ger-
many). The authors acknowledge support from Deutsches Elektronen-Synchrotron DESY (Hamburg,
Germany), a member of the Helmholtz Association HGF.

References
[1] Moritz A.W. Scham et al. “DeepTreeGAN: Fast Generation of High Dimensional Point Clouds”.

Submitted to EPJ Web of Conferences CHEP, https://arxiv.org/abs/2311.12616. May
2023.

[2] S. Agostinelli et al. “GEANT4–a simulation toolkit”. In: Nucl. Instrum. Meth. A 506 (2003),
p. 250. DOI: 10.1016/S0168-9002(03)01368-8.

[3] Johannes Albrecht et al. “A Roadmap for HEP Software and Computing R&D for the 2020s”.
In: Computing and Software for Big Science 3.1 (Mar. 2019), p. 7. DOI: 10.1007/s41781-
018-0018-8. arXiv: 1712.06982 [physics.comp-ph]. URL: https://doi.org/10.
1007%2Fs41781-018-0018-8.

[4] G. Apollinari et al. “High Luminosity Large Hadron Collider HL-LHC. High Luminosity Large
Hadron Collider HL-LHC”. In: CERN Yellow Report (2015). Chapter 1 in High-Luminosity
Large Hadron Collider (HL-LHC) : Preliminary Design Report, pp. 1–19. DOI: 10.5170/
CERN-2015-005.1. arXiv: 1705.08830. URL: https://cds.cern.ch/record/2120673.

[5] CMS Offline Software and Computing. CMS Phase-2 Computing Model: Update Document.
Tech. rep. Geneva: CERN, 2022. URL: https://cds.cern.ch/record/2815292.

[6] The CMS collaboration. “The CMS HGCAL detector for HL-LHC upgrade”. In: 5th Large
Hadron Collider Physics Conference. Aug. 2017. DOI: 10.48550/arXiv.1708.08234.
arXiv: 1708.08234 [physics.ins-det].

3https://github.com/DeGeSim/nips23DeepTreeGANv2

5

https://arxiv.org/abs/2311.12616
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://arxiv.org/abs/1712.06982
https://doi.org/10.1007%2Fs41781-018-0018-8
https://doi.org/10.1007%2Fs41781-018-0018-8
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.5170/CERN-2015-005.1
https://arxiv.org/abs/1705.08830
https://cds.cern.ch/record/2120673
https://cds.cern.ch/record/2815292
https://doi.org/10.48550/arXiv.1708.08234
https://arxiv.org/abs/1708.08234
https://github.com/DeGeSim/nips23DeepTreeGANv2

[7] Ian Goodfellow et al. “Generative Adversarial Networks”. In: Commun. ACM 63.11 (Oct.
2020). Ed. by Z. Ghahramani et al., p. 139. ISSN: 0001-0782. DOI: 10.1145/3422622. arXiv:
1406.2661 [stat.ML]. URL: http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf.

[8] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: (2013). DOI:
10.48550/arxiv.1312.6114. arXiv: 1312.6114 [stat.ML].

[9] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. In: Comput. Software Big Sci.
4.1 (Sept. 2017). DOI: 10.1007/s41781-017-0004-6. eprint: 1701.05927.

[10] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “Accelerating Science with
Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer
Calorimeters”. In: Phys. Rev. Lett. 120.4 (2018), p. 042003. DOI: 10.1103/PhysRevLett.
120.042003. arXiv: 1705.02355 [hep-ex].

[11] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “CaloGAN: Simulating 3D high
energy particle showers in multilayer electromagnetic calorimeters with generative adversarial
networks”. In: Phys. Rev. D 97.1 (2018), p. 014021. DOI: 10.1103/PhysRevD.97.014021.
arXiv: 1712.10321 [hep-ex].

[12] Martin Erdmann et al. “Generating and refining particle detector simulations using the Wasser-
stein distance in adversarial networks”. In: Comput. Softw. Big Sci. 2.1 (2018), p. 4. DOI:
10.1007/s41781-018-0008-x. arXiv: 1802.03325 [astro-ph.IM].

[13] Martin Erdmann, Jonas Glombitza, and Thorben Quast. “Precise simulation of electromagnetic
calorimeter showers using a Wasserstein Generative Adversarial Network”. In: Comput. Softw.
Big Sci. 3.1 (2019), p. 4. DOI: 10.1007/s41781- 018- 0019- 7. arXiv: 1807.01954
[physics.ins-det].

[14] F. Carminati et al. “Three dimensional Generative Adversarial Networks for fast simulation”. In:
J. Phys. Conf. Ser. 1085.3 (2018), p. 032016. DOI: 10.1088/1742-6596/1085/3/032016.

[15] Georges Aad et al. “AtlFast3: The Next Generation of Fast Simulation in ATLAS”. In: Comput
Softw Big Sci 6 (2022), p. 7. DOI: https://doi.org/10.1007/s41781-021-00079-7.

[16] Benno Käch et al. “JetFlow: Generating Jets with Conditioned and Mass Constrained Normal-
ising Flows”. In: (2022). arXiv: 2211.13630 [hep-ex].

[17] Benno Käch, Dirk Krücker, and Isabell Melzer-Pellmann. Point Cloud Generation using
Transformer Encoders and Normalising Flows. 2022. arXiv: 2211.13623 [hep-ex].

[18] Simon Schnake, Dirk Krücker, and Kerstin Borras. Generating Calorimeter Showers as Point
Clouds. Dec. 2022. URL: https://ml4physicalsciences.github.io/2022/files/
NeurIPS_ML4PS_2022_77.pdf.

[19] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions on Neural
Networks 20 (2009), pp. 61–80. URL: https://api.semanticscholar.org/CorpusID:
206756462.

[20] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional
networks”. In: IEEE Transactions on Neural Networks. 5.1 (2016), pp. 61–80. DOI: 10.1109/
TNN.2008.2005605. arXiv: 1609.02907.

[21] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3D Point Cloud Generative Adversarial
Network Based on Tree Structured Graph Convolutions. 2019. arXiv: 1905.06292 [cs.CV].

[22] Raghav Kansal et al. JetNet. Version 2. Aug. 2022. DOI: 10.5281/zenodo.6975118. URL:
https://doi.org/10.5281/zenodo.6975118.

[23] Raghav Kansal et al. JetNet150. Version 2.0.0. Aug. 2022. DOI: 10.5281/zenodo.6975117.
URL: https://doi.org/10.5281/zenodo.6975117.

[24] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. “A Brief Introduction to PYTHIA
8.1”. In: Comput. Phys. Commun. 178 (2008), p. 852. DOI: 10.1016/j.cpc.2008.01.036.
arXiv: 0710.3820 [hep-ph].

[25] Erik Buhmann. “Getting High: High Fidelity Simulation of High Granularity Calorimeters
with High Speed”. In: May 2020.

[26] Erik Buhmann et al. “Decoding Photons: Physics in the Latent Space of a BIB-AE Generative
Network”. In: EPJ Web Conf. 251 (2021), p. 03003. DOI: 10.1051/epjconf/202125103003.
eprint: 2102.12491.

[27] Benno Käch and Isabell Melzer-Pellmann. Attention to Mean-Fields for Particle Cloud Gener-
ation. 2023. arXiv: 2305.15254 [hep-ex].

6

https://doi.org/10.1145/3422622
https://arxiv.org/abs/1406.2661
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.48550/arxiv.1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1007/s41781-017-0004-6
1701.05927
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://arxiv.org/abs/1705.02355
https://doi.org/10.1103/PhysRevD.97.014021
https://arxiv.org/abs/1712.10321
https://doi.org/10.1007/s41781-018-0008-x
https://arxiv.org/abs/1802.03325
https://doi.org/10.1007/s41781-018-0019-7
https://arxiv.org/abs/1807.01954
https://arxiv.org/abs/1807.01954
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/https://doi.org/10.1007/s41781-021-00079-7
https://arxiv.org/abs/2211.13630
https://arxiv.org/abs/2211.13623
https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_77.pdf
https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_77.pdf
https://api.semanticscholar.org/CorpusID:206756462
https://api.semanticscholar.org/CorpusID:206756462
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1905.06292
https://doi.org/10.5281/zenodo.6975118
https://doi.org/10.5281/zenodo.6975118
https://doi.org/10.5281/zenodo.6975117
https://doi.org/10.5281/zenodo.6975117
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://doi.org/10.1051/epjconf/202125103003
2102.12491
https://arxiv.org/abs/2305.15254

[28] Vinicius Mikuni and Benjamin Nachman. “Score-based generative models for calorimeter
shower simulation”. In: Phys. Rev. D 106.9 (2022), p. 092009. DOI: 10.1103/PhysRevD.
106.092009. arXiv: 2206.11898 [hep-ph].

[29] Vinicius Mikuni, Benjamin Nachman, and Mariel Pettee. “Fast Point Cloud Generation with
Diffusion Models in High Energy Physics”. In: (Apr. 2023). arXiv: 2304.01266 [hep-ph].

[30] Raghav Kansal et al. “Particle Cloud Generation with Message Passing Generative Adversarial
Networks”. In: (2022). arXiv: 2106.11535 [cs.LG].

[31] Raghav Kansal et al. “Evaluating generative models in high energy physics”. In: Physical
Review D 107.7 (Apr. 2023). DOI: 10.1103/physrevd.107.076017. URL: https://doi.
org/10.11032Fphysrevd.107.076017.

[32] Matthew Leigh et al. PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics.
2023. arXiv: 2303.05376 [hep-ph].

[33] Erik Buhmann, Gregor Kasieczka, and Jesse Thaler. “EPiC-GAN: Equivariant Point Cloud
Generation for Particle Jets”. In: (Jan. 2023). arXiv: 2301.08128 [hep-ph].

[34] Erik Buhmann et al. EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffu-
sion. 2023. arXiv: 2310.00049 [hep-ph].

[35] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. 2016. arXiv: 1511.06434 [cs.LG].

[36] Shaked Brody, Uri Alon, and Eran Yahav. “How Attentive are Graph Attention Networks?” In:
International Conference on Learning Representations. 2022. URL: https://openreview.
net/forum?id=F72ximsx7C1.

[37] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with PyTorch Geomet-
ric”. In: ICLR Workshop on Representation Learning on Graphs and Manifolds. 2019.

[38] Juho Lee et al. Set Transformer: A Framework for Attention-based Permutation-Invariant
Neural Networks. Tech. rep. arXiv:1810.00825 [cs, stat] type: article. arXiv, May 2019. DOI:
10.48550/arXiv.1810.00825. arXiv: 1810.00825 [cs.LG]. URL: http://arxiv.org/
abs/1810.00825 (visited on 12/07/2023).

[39] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Networks”. In: 6th
International Conference on Learning Representations. 2018. arXiv: 1802.05957 [cs.LG].
URL: https://openreview.net/forum?id=B1QRgziT-.

[40] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].

[41] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. 2017. arXiv: 1705.02894 [stat.ML].
[42] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. DOI:
10.48550/arXiv.1412.6980. eprint: 1412.6980.

[43] Tim Salimans et al. Improved Techniques for Training GANs. 2016. arXiv: 1606.03498
[cs.LG].

[44] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[45] Raghav Kansal et al. “JetNet: A Python package for accessing open datasets and benchmarking
machine learning methods in high energy physics”. In: Journal of Open Source Software 8.90
(Oct. 2023), p. 5789. DOI: 10.21105/joss.05789. URL: https://joss.theoj.org/
papers/10.21105/joss.05789.

7

https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1103/PhysRevD.106.092009
https://arxiv.org/abs/2206.11898
https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2106.11535
https://doi.org/10.1103/physrevd.107.076017
https://doi.org/10.11032Fphysrevd.107.076017
https://doi.org/10.11032Fphysrevd.107.076017
https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2310.00049
https://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.48550/arXiv.1810.00825
https://arxiv.org/abs/1810.00825
http://arxiv.org/abs/1810.00825
http://arxiv.org/abs/1810.00825
https://arxiv.org/abs/1802.05957
https://openreview.net/forum?id=B1QRgziT-
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1705.02894
https://doi.org/10.48550/arXiv.1412.6980
1412.6980
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://doi.org/10.21105/joss.05789
https://joss.theoj.org/papers/10.21105/joss.05789
https://joss.theoj.org/papers/10.21105/joss.05789

	Introduction
	JetNet

	Architecture
	Generator
	Critic
	Training
	Preprocessing & Postprocessing

	Results
	Conclusion

