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Abstract

In High Energy Physics, detailed and time-consuming simulations are used for
particle interactions with detectors. To bypass these simulations with a generative
model, the generation of large point clouds in a short time is required, while the
complex dependencies between the particles must be correctly modelled. Particle
showers are inherently tree-based processes, as each particle is produced by the
decay or detector interaction of a particle of the previous generation. In this work,
we present a significant extension to DeepTreeGAN [1], featuring a critic, that is
able to aggregate such point clouds iteratively in a tree-based manner. We show that
this model can reproduce complex distributions, and we evaluate its performance
on the public JetNet 150 dataset.

1 Introduction

In particle physics, detailed, near-perfect simulations of the underlying physical processes, the
measurements, and the details of the experimental apparatus are state-of-the-art. However, accurate
simulations of large and complex detectors, especially calorimeters, using current Monte Carlo-based
tools such as those implemented in the Geant4 [2] toolkit are computationally intensive. Currently,
more than half of the worldwide Large Hadron Collider (LHC) grid resources are used for the
generation and processing of simulated data [3]. For the future High-Luminosity upgrade of the LHC
(HL-LHC [4]), the computational requirements will exceed the computational resources without
significant speedups, e.g., for the CMS experiment by 2028 [5] projecting the current technologies.
This will become even more demanding for future high-granularity calorimeters, e.g., the CMS
HGCAL [6] with its complex geometry and extremely large number of channels. To address these
challenges, fast simulation approaches based on Deep Learning, including Generative Adversarial
Networks (GAN) [7] and Variational Autoencoders (VAE) [8], have been explored early [9–14] and
deployed recently [15].
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The majority of these approaches consider the data as voxels living on three-dimensional grids.
Especially for high-granularity calorimeters like the HGCAL, the calorimeter cells are highly irregular,
and the data is often sparse. In such a situation, it is beneficial to consider the data as Point Clouds
(PC), e.g., tuples of cell energies and three-dimensional coordinates, i.e., four-dimensional point
clouds [16–18]. For modelling calorimeter showers, which are cascades of particles, it seems
natural to model the creation of such point clouds as a tree-like process. Such an approach can be
implemented by Graph Neural Networks (GNN) [19] and Graph Convolutions [20]. For modelling
PC data representing three-dimensional objects, a similar approach [21] called tree-GAN [21] exists.
For our use case, especially for modelling the large dynamic range of the energy dimension, this
approach is not sufficient. Here we report on the development of a largely extended Graph GAN
approach, which we named DeepTreeGAN that can be applied to multiple areas of PC generation. To
demonstrate the abilities of our model, we present a first application to the JetNet dataset introduced
in the next section.

1.1 JetNet

In this study, the JetNet [22, 23] datasets are used. Each dataset contains PYTHIA [24] jets with an
energy of about 1 TeV, with each jet containing up to 30 or 150 constituents (here: 150). The datasets
differ in the jet-initiating parton. Here, the dataset for top quark jets is studied. Each dataset contains
about 170k individual jets split as 110k/10k/50k for training/test/validation, where the validation
dataset is used for our results. The jet constituents, the particles, are clustered with a cone radius
of R = 0.8. These particles are considered to be massless and can therefore be described by their
3-momenta or equivalently by transverse momentum pT , pseudorapidity η, and azimuthal angle ϕ.
In the JetNet datasets, these variables are given relative to the jet momentum: ηreli := ηi − ηjet,
ϕrel
i := ϕi − (ϕjet mod 2π), and prelT,i := pT,i/pT,jet, where i runs over the particles in a jet.

Calculating the invariant mass from these relative quantities, for example, for the jet mass, implies
mrel = mjet/pT,jet. This dataset has gained popularity in the particle physics community as a
benchmark for PC-based generative models [16–18, 25–34].

2 Architecture

PC-based GANs [17, 27, 30, 33] frequently choose a refinement approach: Starting with a PC of
the desired size with features sampled from noise, the PC is updated multiple times in the generator
and the critic. In the final step of the critic, the points are aggregated and mapped to a single value,
usually with a feedforward neural network (FFN). In this way, the dimensionality is greatly reduced
in a single step. Commonly, the PC is updated by first transforming the points individually. Then
they are aggregated into a global vector, which is used in-turn to transform the points again. In a
image-based GAN approach like DCGAN [35], the generator would apply convolutions in sequence
to iteratively upscale a random vector to an image and the critic would apply convolutions in sequence
to iteratively downscale an image to a scalar. These convolutions cannot be directly translated to PCs,
which is why the mentioned refinement approach is prevalent for PC-based GANs. Our approach
instead is to translate this principle and to construct a critic that reduces the dimensionality iteratively.
In this way, we complement the DeepTree generator [1], that iteratively upscales PCs.

2.1 Generator

The generator part of this model largely matches the one published in [1], with a few key differences:
Instead of splitting the leaf vector into one part per branch and mapping the latter separately to the
desired number of branches, the full leaf vector is now mapped to the number of branches times
number of features. The generator uses 2, 3, 5, and 5 branches (with a product of 150) and goes from
64 to 33 to 20 to 10 to 3 features. For each event, the number of constituents is sampled from the
dataset and the output of the generator is cut to this size.

2.2 Critic

The critic is shown in Figure 1, its components are described in the following section. It features three
subcritics, that are applied to the different stages of aggregation: The first is applied directly on the
input PC (up to 150 points), the other two are applied after each bipartite pool (pooling to 30 points
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Figure 1: The critic, as described in 2.2

and 6 points). The expectation is that the first subcritic provides feedback on the more low-level
features, while the two later subcritics operate on aggregated points and thus provide feedback on
more high-level features. Before the bipartite pool, the embedding layer is applied, which maps the
number of features to 10 and transforms the input.
The critic is conditioned on pT, η and the mass of the jet.

Bipartite Pool For the iterative reduction of the number of points a pooling operation should fulfill
the following conditions: First, it must be differentiable to enable backpropagation. Then it should
be invariant under permutation because the input is permutation invariant. As the number of input
points varies, it needs to accept an arbitrary number of points, down to a single one. The run-time
pooling operation should scale well to large PCs, ideally linear with the number of points. Finally, it
should map to a fixed number of points to construct a regular shaped output tensor, that allows faster
and more convenient implementations. To achieve these requirements, we propose constructing a
bipartite graph, densely connecting the input PC to a fixed number of trainable nodes and applying a
Message Passing Layer (MPL) to this graph. This will return a PC with a fixed number of points.
The dense connection yields a number of edges that equals the number of input points times the
number of trainable nodes. Because each edge yields one message, the run-time of the MPL should
be proportional to the size of the input PC. As an MPL, Gatv2Conv [36] is used with 16 attention
heads, as implemented in PyTorch Geometric [37].
A similar approach has been presented in [38], but implemented as an attention mechanism instead of
an MPL. An advantage of our choice is that the bipartite pool can handle variable sized PCs without
masking.

FFNs The FFNs used in this critic consist of 3 layers with 100 hidden nodes without bias. The first
two hidden layers are followed by a 50% dropout layer and LeakyReLU activation with a negative
slope of 0.1. Spectral normalization [39] is applied to the FFNs, except for the FFN in the embedding
layer, where batch normalization [40] is applied before the activation.

Multi-Aggregation At different stages, the points need to be aggregated in a single vector. This is
commonly done by summing over the points, e.g., [33]. To provide additional information about the
distribution, we compute this vector by concatenating the sum, the maximum, the number of points
and the width. The width of the distribution is estimated by computing the mean absolute deviation:
1
n

∑
i |xi − x̄|.
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Central Node Update For the following description of the embedding layer and the subcritics, we
define a Central Node Update Layer (CNU): First, the input is transformed with an FFN. Then the
transformed PC is aggregated with the multi-aggregation. Lastly, each of the transformed nodes is
concatenated with the aggregated vector and passed through a second FFN that maps the nodes back
to their original dimension.

Embedding The embedding layer first maps the points independently to 10 features with an FFN
and passes the PC though a CNU layer with a residual connection.

Subcritics Each subcritic is constructed using two CNUs with a residual connection. The points
are then aggregated in the multi-aggregation scheme. This aggregated vector is then concatenated
with the condition (pT, η and mass of the jet) and passed to an FFN, mapping the vector to a single
output. This yields three output values for each event which are summed such that the application of
the loss and the backpropagation takes place for all the outputs in parallel.

2.3 Training

Generator and critic are trained using the Hinge [41] loss, with a ratio of 1 to 2 gradients steps.
The optimizer for the generator (critic) is Adam [42] with β1 = 0.9, β2 = 0.999, a weight decay
of 10−4 and a learning rate of 10−5 (3 ∗ 10−5). Additional to the Hinge loss, the generator is also
trained to minimize the feature matching loss [43] with a factor of 0.1. As an “intermediate layer” the
concatenation of the multi-aggregation of the input PC, together with the output of the embedding
and bipartite pool layers are used.

2.4 Preprocessing & Postprocessing

For the training, the ηrel and ϕrel distributions are scaled separately to a normal distribution. The prelT
distribution is scaled using a Box-Cox transformation with standardizing as implemented in [44]. To
produce samples, the inverse scaling is applied to the output of the generator. The original dataset
is scaled so that

∑
i p

i
T = 1. This feature is difficult to model for the generator, while it is easy to

recognize for the critic. To avoid limiting the performance of the model, the output of the generator is
scaled in the same way.

3 Results
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1Figure 2: The distributions of ηrel, ϕrel, prelT for constituents of the jets and the mass of the jets for
the top-quarks JetNet 150 dataset (Simulation), as described in Section 1.1 and DeepTreeGAN
(Model).

The variables of the constituents and the mass of the top quark dataset are shown in Figure 2. The
generated distributions of the constituents closely match the distribution of the data. While the double
peak structure of the mass distribution is clearly visible, the model is not able to produce the peak
quite as sharp as in the dataset. In Table 1, DeepTreeGAN is compared to other state-of-the-art GANs
and found to be competitive in this context. Diffusion and flow-matching based models [29, 34] have
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Table 1: Comparison of the proposed DeepTreeGAN to EPiC-GAN [33] and MDMA [27]. The
metrics were computed on a 25k event hold-out sample of the JetNet 150 top quark dataset. The
‘Limit’ row gives the measured in-sample distance by bootstrapping the hold-out dataset. Lower
is better for all metrics. Values taken from [27, Table 1]. The metrics are provided by the JetNet
library [45]. The best performance is printed in bold.

Model WM
1 (×103) WP

1 (×103) WEFP
1 (×105) FPD(×104)

Limit 0.42± 0.09 0.12± 0.04 1.22± 0.32 1.2± 0.6
EPiC-GAN 0.69± 0.08 0.65± 0.03 2.67± 0.39 22± 1
MDMA 0.57± 0.09 0.10± 0.02 2.12± 0.64 5.3± 0.9
DeepTreeGAN 1.49± 0.04 0.13± 0.02 5.01± 0.08 3.4± 0.7

recently provided leading results for the JetNet dataset, but sample production is generally slower
compared to GAN approaches. The DeepTreeGAN code and weights are available on GitHub.3

4 Conclusion

In this work, the DeepTreeGAN model, first introduced in [1], was significantly extended to model
up to 150 jet constituents of the JetNet dataset. To this end, a PC-based critic has been developed,
featuring a pooling operation (Section 2.2), that allows the iterative downscaling of PCs. Through its
significant advantages, this novel pooling implementation may prove useful not only for generative
tasks, but also any PC regression or classification task. This extension represents a significant
milestone in scaling this model to handle even larger point clouds, such as particle showers in
high-granularity calorimeters.
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