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Abstract

Digital in-line holography is a versatile and reliable imaging technique for charac-
terizing the size and spatial distribution of particles in flows. It maps 3D particle
snapshots into a 2D image – a hologram. The analysis bottleneck of in-line holo-
graphic imaging is the immense cost of computation and manual effort that must
be invested. Here we propose a learning-based approach to extract the size and
3D spatial distribution of objects from holograms. We outperform the standard
propagation based method in terms of detection rate, precision and processing
time on a small sensor aperture and at 1/4 of the original resolution. Our method
performs with an F1 score of 0.91 in suspensions with more than 60 particles/cm3,
which is an 18 percent performance boost in comparison to propagation-based
software commonly used in practice. At the same time, our method is also several
orders of magnitude faster, eliminating the computational bottleneck.

1 Introduction

Holography is an imaging technique that captures 3D information of an object on a 2D image. In
everyday photography, only the intensity variations are recorded, while the phase, which encodes
the 3D character of the scene, is lost [Ghatak, 2008]. In holography the phase information can be
reconstructed using the principles of diffraction of coherent light.

Holography has been used for many years in atmospheric sciences to study particle flows [Thompson,
1974], which is crucial for understanding the Earth’s climate and hydrological cycle [Bodenschatz
et al., 2010] and the effects of anthropogenic changes in aerosols on clouds [Toll et al., 2019, Rosenfeld
et al., 2019]. The unique feature of holography is that it provides a non-intrusive, instantaneous
measurement of particle size distribution in a large and representative sample volume, which is
difficult to achieve with other imaging techniques. However, the analysis of hologram images remains
a tedious task that is fraught with significant difficulties. The analysis of a hologram takes about

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



five orders of magnitude longer than its acquisition, so the method cannot be efficiently applied to a
large-scale problem.

Our goal in this paper is to work towards making digital in-line holography accurate, affordable and
real-time efficient. In particular, we focus on settings with a large sample depth and small sensor
size (Fig. 1). We developed a learning based method to extract the coordinates and sizes of all the
particles in a hologram. On synthetic holograms with added camera read noise and quantization, we
outperform the classical propagation approach[Fugal et al., 2009] on a small sensor/camera aperture
and at 1/4th of the original resolution. In particular, we show that we can retrieve the 3d position
and size of particles beyond the diffraction-based resolution limit of classical reconstruction-based
methods.

2 Methods for holography reconstruction

Reconstruction based on FFT-propagation The basic setup for in-line holography is illustrated in
Fig. 1. Based on scalar diffraction theory, the hologram at distance z0 from camera can be propagated
to other distances by convolving it with a Huygens-Fresnel kernel hz−z0 ,

I(x, y, z) = (hz−z0 ∗ I) (x, y, zo), (x, y, z) ∈ R3. (1)

For sampling reasons [Fugal et al., 2009], the above is done in Fourier space using the Huygens-
Fresnel filtering kernel [Goodman, 2005].
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Figure 1: Digital in-line holography setup with large sample depth and small sensor area as we use it
in this paper.

The operation is repeated for each z required to cover the entire depth of the volume. Typically, in
cloud holography, one desires 100µm depth resolution, where one has to then reconstruct thousands
of z planes, thereby leading to a computational bottleneck.

After reconstruction, further image processing is needed. One common approach is to do intensity
thresholding and other filtering methods described in Fugal et al. [2009], Bagheri et al. [2023] to
extract object parameters, followed by particle–artefact classification using a small amount of human-
supervised training data, denoted as ‘Std. method’ in (Fig. 4). Alternatively, one can apply criteria for
particle shape [Schreck et al., 2022], but particles close to the each other or to the edges of the detector
may be missed as they appear distorted in shape. At best, this method takes 30 minutes/25M pixels
to output particle parameters.

There are methods which take the inverse problem approach [Soulez et al., 2007, Seifi et al., 2012,
Fournier et al., 2011]. Here, convex optimization is performed directly on the parameter space
(xj , yj , zj , rj). Overall, above methods are accurate, but not suitable for processing voluminous data
because they are slow.

ML based approaches. [Shimobaba et al., 2019] showed that such problem can easily be mapped
to the deep learning framework directly on the particle parameter space. Later, efforts by [Shao
et al., 2020, Chen et al., 2021, Zhang et al., 2022] have been made to improve on detection and
precision. These approaches have been evaluated only on holograms with small sample depths ∼ 2cm,
which have relatively localized interference patterns that are straightforward to detect. Whether they
generalize to larger sample depth on the order of 20cm is unclear. [Schreck et al., 2022] describe a
hybrid approach using classical reconstruction followed by a neural network for particle detection.
Their method has a lot of potential, but does not avoid the computational bottleneck of reconstruction.
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Figure 2: Illustration of our two approaches. The output is the same in both approaches. B: We use a
pre-processing step to localise fringes and enhance contrast using an FNO-based neural network.

3 Our approach

The two main challenges our approach addresses are (1) avoiding the computational cost of explicit
3d reconstruction or iterative optimization and (2) extracting particle locations out of highly non-local
interference patterns with strong contrast variations across particles as they arise in holograms from
setups with large sample depth (like Fig. 1).

To address the first challenge, we circumvent explicitly reconstructing the 3d volume and treat the
problem as an (x, y) localization problem combined with regression of the z coordinate and size of
each particle. For this, we employ the U-Net architecture [Ronneberger et al., 2015] combined with
the “objects as points” approach to object detection [Zhou et al., 2019]. The U-Net takes as input a
hologram and outputs three feature maps (Fig. 2A): (1) a heatmap that predicts the probability of
a particle being at any (x, y) location; (2) the z coordinate of the particle from the sensor; (3) the
radius r of the particle. From the first heatmap, we extract the particle locations by straightforward
detection of local maxima. The latter two feature maps then indicate z and r of the particle. They are
defined only at particle locations.

The second challenge is the nature of holograms when imaging a large sample depth: particles far
away from the sensor give rise to highly non-local interference patterns and variation in particle
size results in highly variable contrast of the particles’ fringe patterns. We found these properties to
result in less salient particles often being missed. To address this challenge, we devised a learned
pre-processing step that redistributes the contrast and makes the fringe pattern of all particles more
localized by predicting what the hologram would look like if all particles in the 3d volume had the
same size and were imaged with a much lower (1/8) wavelength (see Fig. 2B “Weighted Holo”).
For this pre-processing step, we use another image-to-image network, which is based on the Fourier
Neural Operator (FNO) architecture [Kovachki et al., 2021, Li et al., 2020]. We found the FNO
architecture to be more suitable for this intermediate step than a regular U-Net, presumably due
to its operating in Fourier space, which gives rise to global receptive fields in every layer. After
this pre-processing step, the resulting modified (non-physical) hologram, along with the original
hologram, is fed into the U-Net described above to detect particles and regress their size and radius
(Fig. 2B).

4 Experiments

Datasets. We used the Fraunhofer diffraction formula [Goodman, 2005] to calculate the expected
photon count at the sensor, added shot noise by sampling from a Poisson distribution and added
Gaussian noise to simulate the sensor read noise. The LASER wavelength was 355nm. Synthetic
holograms had 512× 512 pixel resolution with 3 µm pixel pitch. For training (99%) and validation
(1%) we downsampled these holograms to 128× 128.

We created two datasets. The first consisted of 50,000 holograms that contained two particles of size
6 µm and 100 µm, respectively, placed at 200mm from the camera at a random (xj , yj) location. We
refer to this dataset as the toy dataset, as it presents a minimal example of hard cases that demonstrate
the limitation of diffraction-limited propagation methods and the success of neural networks (Fig. 3).
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The second, our main dataset, consisted of 900,000 holograms. In this dataset the particles’ coor-
dinates and size were drawn uniformly (z ∈ [5mm, 200mm]; r ∈ [6 µm, 100 µm]). The number of
particles in a hologram were drawn from [1, 2, 4, 8, 16, 32] for 150,000 holograms each.

Our test dataset consisted of 2,000 holograms. Here, location and size were again drawn uniformly,
but all particle counts between 1 and 32 were possible, drawn according to the following distribution,
which roughly resembles the distribution at training time.

p(N) =

{
1
4 1 ≤ N < 5

2−
N
4 5 ≤ N ≤ 32

, for N particles. (2)

Architecture details. We use the standard U-Net architecture [Ronneberger et al., 2015], with the
exception that we use six blocks in both encoder and decoder, and a sigmoid activation just before the
output. For the z and r feature maps, the output is scaled between [0, 200] and [0, 50], respectively.

In the FNO network, we concatenate the input hologram with a positional encoding (consisting of
two channels coding the x and y coordinate, respectively) and lift the result to 512 channels using
1× 1 convolutions. The result is passed through five FNO blocks [Kovachki et al., 2021, Li et al.,
2020]. Each FNO block has 128 Fourier filters and GeLU activation function, and operates only
on the 64× 64 lowest spatial frequency modes. Finally, the 512 channels are projected back to one
channel, which predicts the weighted hologram. This weighted hologram along with the original
hologram is then fed as a two-channel input to a U-Net with the same architecture and outputs as
above. Batch normalization is used after every convolution-activation pair for both the models.

Training. We use the Adam optimizer with a learning rate of 5×10−4, which is reduced by a factor
of 0.9 with patience of 10 epochs. We use the following loss functions: a weighted combination of
mean of squared errors (weight= 0.9999) with total variation (TV) loss (weight = 0.0001) for the
heatmap, Huber loss (δ = 0.001) for the z and r regression [Shao et al., 2020] and an MSE loss for
the weighted holograms output by the FNO network. The overall loss being optimized was the sum
of all individual loss functions.

Evaluation. For evaluation, we first determine all correctly detected, missed and falsely detected
particles as follows: Any detection in a 3× 3 pixel area and within ±8mm in z of the ground truth
was counted as a match. We report the performance in terms of F1 score, recall and mean absolute
error (MAE) in z and r.

5 Results

Figure 3: A: Two particles (3 µm and 50 µm radius), placed at z = 200mm. B: Propagation-based
reconstruction at z = 200mm only detects 50µm particle (red circle), but neural nets detect both
(blue dot, grey cross). C: Accuracy of the three approaches.

We start with an illustrative toy example of just two particles (Fig. 3) that highlights the limitations of
the propagation-based approach and the challenges associated with detecting small, distant particles.
While the propagation-based reconstruction does not detect the small particle (Fig. 3B), the neural
networks reconstruct such cases almost perfectly (Fig. 3B, C).

The superior performance of our neural network based approach also holds in the more general
case (Fig. 4). We compared it to the standard method described by [Fugal et al., 2009] as well as
an oracle based on reconstruction followed by thresholding. The oracle was given all z slices that
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contained a particle and determined only the (x, y) coordinate based on intensity thresholding of the
reconstruction (it represents an upper bound to what can be achieved with thresholding). The neural
networks outperformed the classical methods with respect to both recall and precision (Fig. 4A). The
improvements were evident across all distances1 from the sensor (Fig. 4D), particle sizes (Fig. 4E)
and particle densities (Fig. 4F) tested. Regressing the z location worked with reasonable accuracy,
but with somewhat higher error than the standard method (Fig. 4B). In terms of size estimation, our
approach outperformed the standard method considerably (Fig. 4C). The 10-run average processing
time to extract particle parameters is 0.1 seconds/25M pixels which is 18000 times faster than the
standard method.
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Figure 4: A: Precision over recall for the test dataset. B,C: Comparison for Mean Average Error
(MAE) in z and r with respect to z (B) and radius r (C) of particles. D–F: Accuracy (F1 score) with
respect to z (D), r (E) and number of particles (F).

6 Discussion

Our results show clear improvements in detecting particles in large volumes with limited sensor
size while at the same time improving inference speed. Estimating the z localization could still be
improved. It is noteworthy that our neural networks are currently working on 1/4 of the original reso-
lution used for propagation-based reconstruction. Analysis with half- and full- resolution holographic
images, physical models to include the near-field as well as scaling the approach to higher-resolution
sensors often used in practice (>25 megapixels) is work in progress.
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