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Abstract

Exoplanets in protoplanetary disks cause localized deviations from Keplerian
velocity in molecular line emission. Current methods of characterizing these
deviations are slow and prone to false negatives. We demonstrate that machine
learning can quickly and accurately detect planets. We train computer vision models
on synthetic observations of protoplanetary disks generated from simulations and
apply these models to real observations. The models recreate previous discoveries,
accurately locating known planets. A new exoplanet in the disk HD 142666 is
identified.

1 Introduction

Kinematic analysis of protoplanetary disks uses molecular line emission to measure the motion of
regions within the disk and compares the motion to the default Keplerian motion in which only
the star’s gravity influences the motion. A planet embedded within the disk will cause localized
deviations from Keplerian motion known as “kinks” [Teague et al.| 2018 [Pinte et al., 2018}, 2019].
Identifying these kinks can lead to the identification and characterization of the responsible planet,
which improves our understanding of planet formation and disk evolution.

The general process of identifying and verifying planets using kinematic data is slow, difficult, and
includes a strong likelihood of false negatives. Of the dozens of observed disks, only a handful have
been shown to host a planet via kinematic analysis. paper presents machine learning algorithms
applied to protoplanetary disks with the purpose of identifying forming exoplanets more accurately.
Our models can locate previously known planets embedded within disks. The models also locate an
embedded planet that was previously unreported.

2 Methods

We create 1,000 synthetic protoplanetary disks under various physical and observation conditions (e.g.
disk mass, distance, viewing angle, etc.). 13 different parameters are varied in total. The parameter
space is sampled using a Latin Hypercube (LHC) [McKay et al.,|1979]]. We use values from observed
ranges inferred from disk surveys, e.g, DSHARP, [Andrews et al.l 2009, |Andrews et al., 2018} [Huang
et al.||2018] and widely accepted simulational parameters [Pinte et al.|[2018}, 2019, 2020]. Disks are
assumed to be vertically isothermal.

2.1 Simulations

All 1,000 systems are simulated with 3D smoothed particle hydrodynamics (SPH) using the
PHANTOM [Price et al., 2018]] code (GNU general public license). 1,000,000 particles were used in
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Figure 1: Example raw (top row) and convolved, noisy (bottom row) channel maps in a disk with
a planet present. The planet circled by a white dashed line in the upper right panel. The opposite
velocity channel is shown in the left column, and the systemic channel is shown in the middle column.
The solid white circle in the bottom middle panel is the beam indicating the spatial resolution.

each disk. Data was taken every tenth of an orbit. 25% of the simulations were withheld for testing.
20% of the training data was used for validation.

2.2 Velocity Structure

The simulation results are used to create velocity channel maps in '2CO, a commonly used tracer for
H, that has been used for the kinematic detection of planets, e.g., [Pinte et al., 2019]]. The channel
maps are created using the MCFOST radiative transfer code [Pinte et al.,[2006,[2009] (GNU general
public license). The final result for a given velocity channel is an image with 600x600 pixels at a
resolution of 1 au/pixel. 10® photon packets are used. The velocity channel maps are convolved
spatially and spectrally, and noise is added. Figure[T]shows the results of convolving selected velocity
channels for a disk with a planet.

2.3 Models

The input for all models is a (600x600xC') image, where C' is the number of velocity channels, and
the outputs are a classification decision for "no planet" or "at least one planet." We use C' =47, 61,
and 75 in order to account for varying resolution in observations. An Adam optimizer is used. The
learning rate is updated every 10 epochs by multiplying the current rate by . We use cross entropy
loss. We train for 50 epochs but allow early stopping with a patience of 8 epochs. 25% of the data
was withheld for testing, and 20% of the training data was used for validation.

We use two different models based on PyTorch Torchvision|[Paszke et al.,2019|] implementations:
EfficientNetV2 [Tan and Lel 2021]] (ENV2) and RegNet [Xu et al.,2021]] (RN). Neither model uses
the default hyperparameters or pre-trained weights, which would be under license CC-BY-NC 4.0.
We perform Bayesian hyperparameter tuning using WANDB| [Biewald, |2020]] to find separate sets of
hyperparameters that minimize the validation loss. The initial hyperparameters for these sweeps are
based on default versions “EfficientNetV2 S” and “RegNetY 16GFE.” Table|l|gives hyperparameters
as determined by the Bayesian hyperparameter sweep. The models were too large to fit on available
GPUs, so they were all trained on CPUs.


https://github.com/cpinte/mcfost
https://github.com/pytorch/vision/tree/main/torchvision
https://wandb.ai/home

Model Parameters Learning Rate y Depth  Dropout Training Time

(Millions) (hours)
ENV2 (47) 20.2 0.0102 0.0429 - 0.0391 3
ENV2 (61) 20.2 0.0087 0.0326 - 0.0278 7
ENV2 (75) 20.2 0.0084 0.0298 - 0.0335 13
RN 47) 51.0 0.0368 0.0087 14 - 19
RN (61) 62.8 0.0012 0.0428 15 - 16
RN (75) 114 0.0033 0.0176 21 - 22

Table 1: A subset of hyperparameters for all models as determined by the Bayesian sweep using
WANDB.
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Figure 2: Left: Various metrics calculated from the withheld test set for all models. Right: Corre-
sponding ROC curves. Error bars show 95% confidence intervals that are calculated by bootstrapping
each metric 1,000 times using random selections of 80% of the test data. The percentages next to the
accuracy labels denote the decision threshold.

3 Results and Discussion

3.1 Machine learning Models

Figure [2] gives several metrics for model performance and the ROC curves. We consider several
values of the softmax output for the classification decision threshold. It is encouraging that, for all
other models than the RN (47), there are no qualitative changes in the results based on the decision
threshold.

3.2 Observations

We demonstrate the effectiveness of our model by applying it to real telescope observations. HD
97048 hosts a planet that was discovered by using kinematic observations. Using
the same data as (ADS/JAO.ALMA#2016.1.00826.S), we show that our models
replicate the prediction and estimated location of the forming exoplanet (Figure [3). Passing this
essential test gives support to the idea that the models can at least match human performance. Similar
results were found for HD 163296, which is also known to host a planet [Teague et al., 2018| [Pinte]
2018].

3.2.1 HD 142666

Recreating previous discoveries is encouraging, but the purpose of using machine learning is to
facilitate new discoveries. To do so, we apply our models to all disks in the DSHARP catalogue
drews et al., [2018]) that do not have reported planets. The results for HD 142666 (ADS/JAO.ALMA
#2016.1.00484.L) show unambiguous signatures of an embedded planet. This disk has been analyzed
for years, yet no human found the planet. In less than five minutes, all six of our models strongly
identified and localized the planet. Figure @] shows these results. The upper row shows the velocity
channels in which the planet is present. The lower row shows the internal activations of three different
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Figure 3: (a): Av = 0.96 km/s channel. (b): Example activation structure using RN (47). The
estimated planet location ( [Pinte et al.,[2019])) is given inside the white circle.

models, which clearly highlight those same velocity channels. Follow-up simulations confirmed the
planet by existing standards [Teague et al.|[2018]], |Pinte et al.|[2018,[2019].

3.3 Limitations

Our work comes with an important limitation regarding the generated datasets: all simulations are
run with SPH. Grid-based codes could be used to create all of the data or supplement the SPH data in
order to span algorithmic differences. For the sake of consistency and simplicity of interpretation, we
did not do this. Supplementation with grid-based data could be a good direction for future work. It is
possible that the method of domain adaptation [Ben-David et al., 2010], which has already found
success in astronomy [[Vilalta et al., 2019, |Alexander et al., [2023, Ciprijanovié et al.,[2022]], could be
used to encourage the models to overcome any differences between grid-based and SPH datasets.

4 Conclusions

Our results show that a machine learning model trained on synthetic data can determine the presence
and location of forming exoplanets in real telescope observations of protoplanetary accretion disks.
We apply this model to the observed HD 97048 and HD 142666 disks. The presence and location of
the planet in HD 97048 is corroborated with confidences of up to > 99% and activations highlight
the same location given by |Pinte et al.|[2019]. The models identify a previously unreported exoplanet
embedded within HD 142666. These results give a strong endorsement for the use of machine
learning in observational astronomy. Models can match and exceed human proficiency in a fraction
of the time, thereby facilitating discovery and analysis. This will be of utmost importance as both
ALMA and JWST continue to deliver larger and larger disk survey datasets and next generation
telescopes —such as ngVLA and the SKA —come online.
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Figure 4: HD 142666 structure (*2CO: J = 2 — 1) and activations. Upper left: Av = —1.4 km/s
channel with kink circled in white. Upper middle: Av = —1.75 channel with kink circled in white.
Upper right: Av = —2.1 channel. Bottom row: selected activations that roughly correspond to the
channels in the upper row.
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5 Impact Statement

We do not anticipate any negative societal effects from our work. There is little damage that can be
done by claiming a planet is present. This is a strong claim that requires multiple steps of verification,
so the main issue a false positive would create is using the time of experts. Should the model
consistently miss planets, that would be unfortunate. However, there are teams pouring over this data
with the same objective and gaining no useful insight from our work is simply the status quo. On the
other hand, if our work is consistently successful, it could be important for speeding up the analysis
of protoplanetary disks, which would facilitate the progress of planet formation theory.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? We demonstrate that machine learning can locate exoplanets
within protoplanetary disks using both simulated and observational data.

(b) Did you describe the limitations of your work? Section is dedicated to discussing
the limitations of our data and methods.

(c) Did you discuss any potential negative societal impacts of your work? Section [3]
addresses this topic.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? Yes
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? Physical assumptions
and parameters are given in Section 2]
(b) Did you include complete proofs of all theoretical results? We used no proofs.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? All special packages
used for (i.e. excluding things such as NumPy) are cited and linked.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? Sections[2.2]and [2.3]address this.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Errors are reported in Figure 2]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? Section@] addresses this.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? All codes are cited and
linked.

(b) Did you mention the license of the assets? Licenses are described after the packages
are introduced.

(c) Did you include any new assets either in the supplemental material or as a URL? The
only new asset is a private GitHub repository that will not be made public until this
project has concluded. It will be under the Creative Commons license.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? We use our own data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? Our data includes nothing remotely related to such
topics.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? No use of crowdsourcing or humans.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? No use of crowdsourcing or humans.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? No use of crowdsourcing or humans.
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