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Abstract

Dual-phase liquid xenon time projection chambers (LXeTPC) have been success-
fully applied in rare event searches in astroparticle physics because of their ability
to reach low backgrounds and detect small scintillation signals with photosensors.
Accurate modeling of optical properties is essential for reconstructing particle inter-
actions within these detectors as well as for developing data selection criteria. This
is commonly achieved with discretized maps derived from Monte Carlo simulation
or approximated with empirical analytical models. In this work, we employ a novel
approach to this using a neural network trained with a Poisson log-likelihood ratio
loss to model the mapping from light source location to the expected light intensity
for each photosensor. We demonstrate its effectiveness by integrating it into a
likelihood fitter for position reconstruction, simultaneously providing insights into
the uncertainty associated with the reconstructed position.

1 Introduction

Dual-phase liquid xenon time projection chamber (LXeTPC) detectors are used to search for rare
events in astroparticle physics such as dark matter [[1, 5, 8} [12] and neutrinoless double-beta decay [3}
41 [7] searches because of their ability to reach low background levels, discriminate between signals
and backgrounds, and provide 3D position reconstruction of a single particle interaction within
the detector. When an interaction occurs inside the liquid xenon target in the detector, a prompt
scintillation (S1) signal is observed by two arrays of photosensors at the top and bottom of the
detector, and a secondary scintillation (S2) signal is generated when electrons released from the
interaction site are drifted to the top of the detector by an applied electric field. Since the S2 signals
are generated near the top photosensor array, the light distribution is sensitive to the light source
location. Consequently, this sensitivity allows for accurate reconstruction of the positions of the S2
signals and data selection based on the light distribution pattern.

Modeling the optical properties of the detector is crucial for the development of S2 position recon-
struction methods. This involves estimating the expected light intensity for each photosensor in
response to the S2 signal’s position. This is a challenging task for LXeTPC detectors, primarily be-
cause these optical properties can vary among detectors and direct measurements become impractical
once the detector is commissioned. One common approach is to generate discretized maps through
Monte Carlo optical simulations, which can effectively capture small-scale structures when pixel
sizes are sufficiently small. These maps can serve as inputs for expediting photosensor waveform
simulations [[10], reducing the need for computationally intensive optical simulations. However,
this method relies heavily on simulations and can pose challenges when constructing likelihood
fitters. Therefore, position reconstruction methods based on this modeling approach often involve
training machine learning models on simulated S2 signals to learn the mapping from light distribution
patterns to S2 positions [6,[11]]. Alternatively, empirical analytical models offer a smoother, easily
differentiable function for likelihood fitting in position reconstruction 2} [14}[15]]. These models can
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be parameterized using either simulated or experimental data, but they may oversimplify detector
intricacies, such as fine structures caused by electrode-induced light obstructions.

In this study, we explore a new option for modeling the optical map that can provide an advantage
over both discretized maps and empirical analytical models. A neural network model should be able
to learn fine details in the optical map and can give the gradient necessary for a likelihood fitter if the
activation function is appropriately selected. We trained a multilayer perceptron (MLP) model on
simulated S2 patterns with a likelihood-based loss function and implemented a likelihood fitter for
position reconstruction using the trained MLP modeﬂ We show that the assessment of reconstructed
position uncertainty can be achieved by conducting a likelihood scan with the MLP model.

2 Method

2.1 Learning the optical map

Learning the optical map with neural network models requires understanding the S2 generation
process to construct an appropriate loss function. This challenge is also encountered when fitting
empirical models, as previously investigated in Refs. [2, |14} [15]. For photosensor ¢ with an expected
light intensity of \;, the observed signal k; can be sampled as follows:

ki ~ F(u;,0), where p; ~ Poisson();) . e

Here, F'(u;,0) represents a distribution that accounts for the limited resolution of photosensors,
commonly approximated using a normal distribution, while the Poisson distribution models the
photon counting process. Both k; and \; have units of photoelectrons (PE). \; can be expressed as
the product of H;(z,y)—a function of the 2D coordinate on a plane parallel to the top photosensor
array that represents the fraction of light observed by photosensor —and the expectation value of
the total amount of signal observed by the photosensor array, k7 = . k;. This latter quantity is
dependent of the energy of the interaction within the detector:

Ai = krHi(z, y). @

Our goal is to train a neural network model to learn H;(z, y). To achieve this, an ideal loss function
should accurately capture both the Poisson process and the broadening effect. After experimentation,
we discovered that employing a loss function based on a log-likelihood ratio effectively serves this
purpose:

£=-2) [logP(ki; Ai) — log P(Ni; Ai)], (€)

where log P(k;; A;) is the Poisson log-likelihood:

Note that the domain of the factorial operation has been extended to the positive real numbers by use
of the gamma function.

We used an MLP model with a 2-dimensional input, representing the x and y coordinates of the S2
signal, and a 253-dimensional output, corresponding to the number of photosensors in the upper
photosensor array of the considered LXeTPC detector. The MLP model has 3 hidden layers of
dimensions 20, 60, and 180. The MLP architecture includes three hidden layers with dimensions of
20, 60, and 180, respectively. To introduce non-linearity while ensuring differentiability, we applied
the Exponential Linear Unit (ELU) activation function between the hidden layers, and the output
layer used a sigmoid activation function to constrain the outputs to lie between 0 and 1. The MLP
model was implemented and trained using Pytorch [[13].
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The data used for training and evaluating MLP model we
generated synthetic S2 data using a simulation method de-
tailed in [[I1]], which uses an empirical model for H;(x, y) 10*
and assumes F'(u;,0) as a normal distribution. The S2 10
positions were uniformly distributed over the detector area
and the k7 of the S2s were around 4500 PE. As illustrated
in Figure[I] the Poisson fluctuation and broadening effect 10!
become more pronounced when JA; is small. 10!
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In previous studies, likelihood fitters for position recon-

struction relied on empirical analytical models, enabling  Figyre 1: A comparison of expectation

the gradient on the loss function to propagate smoothly to  y4]ue of the signal \; and simulated ob-

the input [2, [14,115]. A trained MLP model also allows  gerved value k; in the synthetic data set.

the gradient to flow from the loss function to the input—

specifically the x and y coordinates of a test position. By running an optimizer, in our case the built-in

stochastic gradient descent optimizer in Pytorch, on the input data, we can find a test position that has

the lowest likelihood loss within the deep learning framework.

The likelihood fitter minimizes the log-likelihood ratio in Eq.[3] The starting point was set at the
center position of the photosensor with the highest intensity. The iteration was terminated when the
test position moved less than 1 mm in distance for three consecutive iterations.

3 Results

The goal of training the MLP model is to learn H;(x, y) for the prediction of \;. Since the training
data is derived from simulations, it provides us with the true values of \; for comparison. Another
MLP model of the same architecture was trained using the Mean Squared Error (MSE) loss, a
commonly used loss function for regression problems, and its performance was compared with the
model trained using the log-likelihood ratio.

As shown in Figure 2] both models are capable of predicting A;, but the one trained on the likelihood
ratio outperforms the MSE-trained model. The model trained on MSE loss performs less effectively
for smaller values of A; because the loss function struggles to capture Poisson fluctuations. However,
for larger \;, both models perform reasonably well. This observation aligns with expectations, as
the log-likelihood ratio effectively approximates a x? loss, which behaves similarly to the MSE loss
when the Poisson distribution is approximated by a normal distribution.

Figure [3] illustrates the outcome of applying the likelihood fitter to a simulated S2 signal. The
reconstructed position matches the simulated position well. The result of the likelihood scan for this
particular S2 signal reveals that the log-likelihood ratio returns small values for positions near the
true position, indicating that the predicted ); in this region matches the observed values better than
the region further away from the true position. Note that the values outside the detector’s boundaries
are not meaningful as S2 signals cannot physically occur outside the detector.

4 Conclusion and Discussion

We trained and tested an MLP model using simulated S2 data, showcasing its ability to learn optical
mappings for position reconstruction. This method is not limited to simulations; it can be extended to
real data for practical applications and provide inputs for waveform simulators.

In conclusion, our study demonstrates the promise of MLP models in optical mapping and likelihood
fitting, paving the way for advancements in particle detector position reconstruction.

Limitations

This work relies on simulations that employ simplified models for optical maps and photosensor
responses.
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Figure 2: Predicted \; and the relative error vs true A; for an MLP model trained on log-likelihood
ratio loss (left) and Mean Squared Error (MSE) loss (right).
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Figure 3: (Left) An example of reconstructed position using a likelihood fitter built with the trained
MLP model. The smaller circles represent the photosensors and the color marks k; for each photo-
sensor. (Right) The result of a likelihood scan using the trained MLP model. The black circle marks

the boundary of the considered LXeTPC detector.

Future works

Future research should focus on improving the modeling of photosensor broadening effects, which
vary among individual photosensors and could have complex dependencies on p; . Additionally, there
is the potential to merge our two neural network models—mapping S2 light distribution to position
and vice versa—either as an autoencoder or using normalizing flow models such as invertible neural

networks [9].

Boarder impact

This methodology extends to real-world detector applications and the loss function can be applied
to tasks involving Poisson-based signal generation. This work does not pose any negative societal

impacts.
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