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Abstract

We assess gradient-based samplers like the No-U-Turn Sampler (NUTS) compared
to traditional Metropolis-Hastings algorithms in tomographic 3× 2 point analyses
using DES Year 1 data and a simulated LSST-like survey. These studies involve
20 and 32 nuisance parameters, respectively. We implement a differentiable for-
ward model using JAX− COSMO and derive parameter constraints using NUTS and
Metropolis-Hastings algorithms. NUTS shows a relative efficiency gain of O(10)
in terms of effective samples per likelihood evaluation but only a factor of ∼ 2 in
terms of computational time due to the higher gradient computation cost. We vali-
date these results with analytical multivariate distributions, concluding that NUTS
can be beneficial for sampling high-dimensional parameter spaces in Cosmology,
though the efficiency gain is modest for moderate dimensions (O(50)).

1 Introduction

In this paper, we explore the significance of differentiability in sampling both cosmological and
nuisance parameters within standard cosmological analyses. To enable this, we develop a differen-
tiable linear matter power spectrum emulator. Emulation involves building an approximate function
that can accurately model the desired quantity. The idea of emulation is in fact an old concept.
For instance, Eisenstein & Hu (1998) derived an analytic expression to describe the linear matter
transfer function in the presence of cold dark matter, radiation, and baryons. However, deriving these
types of expressions in general, purely in terms of cosmological parameters, requires significant
human ingenuity, particularly in the presence of growing model complexity and ever more stringent
accuracy requirements. Various types of emulators have been designed, with their own advantages
and disadvantages. Techniques such as polynomial regression, neural networks, Gaussian Processes
(GPs) and genetic algorithms have been explored by different groups. For example, Fendt & Wandelt
(2007) used polynomial regression to emulate the CMB power spectra, while Habib et al. (2007) used
Gaussian Processes, together with a compression scheme, to emulate the non-linear matter spectrum
from simulations. Recently, Aricò et al. (2021); Spurio Mancini et al. (2022); Bonici et al. (2024)
developed a neural network framework to emulate different power spectra. Moreover, Bartlett et al.
(2023, 2024) used Symbolic Regression – a technique for finding mathematical expression of the
function of interest – to emulate the matter power spectrum.
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Our contributions in this work are as follows:

1. we integrate an emulator for the linear matter power spectrum in JAX− COSMO (Campagne
et al. 2023) and leverage its existing functionalities for computing power spectra for galaxy
clustering and cosmic shear,

2. we take advantage of gradient-based samplers such as NUTS to sample the posterior of the
cosmological and nuisance parameters using DES Year 1 data (Abbott et al. 2018) and a
future LSST-like survey data and

3. we perform an in-depth assessment of whether differentiability is helpful in this context.

2 Method

Our emulator is based on Gaussian Process. We decompose the linear matter power spectrum in two
parts:

Pl(k, z,θ) = G(z,θ)P 0
l (k,θ) (1)

where P 0
l is the linear matter power spectrum evaluated at redshift, z = 0. θ is the vector of

input cosmological parameters, θ = {σ8, Ωc, Ωb, h, ns}. The input training points are generated
using Latin Hypercube Sampling (LHS) which ensures the points randomly cover the full space. In
particular, the emulator is built over the redshift range of z ∈ [0.0, 3.0] and the wavenumber range of
k ∈ [10−4, 50] in units of Mpc−1. We use Nθ = 1000 training points. In particular, we record the
targets (G and P 0

l ) over Nz = 20 redshift values, equally spaced in linear scale for the redshift range
and Nk = 30 wavenumber values, equally spaced in logarithmic scale for the wavenumber range.
This gives us two training sets, Yk ∈ RNθ×Nk and YG ∈ RNθ×Nz . We then build 50 independent
models as a function of the cosmological parameters. Once trained and stored, they are coupled to the
JAX− COSMO code, which is then use to compute weak lensing and galaxy clustering power spectra.

To sample the posterior, we use the gradient-based NUTS algorithm implemented in numpyro (Phan
et al. 2019; Bingham et al. 2019). We compare its performance with the standard Metropolis-Hastings
algorithm in Cobaya, which does not rely on gradient information (Lewis 2013). Throughout, we
compute different metrics, such as the sampling efficiency as well as the Gelman-Rubin statistics to
assess the efficiency of the chain and the convergence respectively (Gelman & Rubin 1992).

3 Data

We analyse two cosmological datasets: DES Y1, with 405 data points and 20 nuisance parameters, and
a future LSST-like dataset, with 903 data points and 32 nuisance parameters, following necessary scale
cuts. These nuisance parameters are integral to the cosmological modelling framework, accounting for
astrophysical and systematic effects such as intrinsic alignment, biases, and shifts in the tomographic
bins.

Besides sampling the posterior for the two cosmological datasets, we also investigate two multivariate
analytical functions: the multivariate normal distribution and the Rosenbrock function. In the
cosmological analyses, the parameter set is fixed, whereas, for the analytical functions, we evaluate
the metrics across increasing dimensionality.

4 Result

In Figure 1, we show the accuracy of the emulator, which was then embedded into the JAX− COSMO
pipeline. For the range of redshifts and wavenumber considered and the domain of the cosmological
parameters, the quantities Pl and G are accurate up to ≤ 1% and ≤ 0.01% respectively. Recall that
we are using 1000 LH samples to build the emulator. Generating the 1000 training points using the
simulator, CLASS (Lesgourgues 2011) took around 1 hour while training the GPs took around 2
hours on a desktop computer. The training of GPs is expensive because of the O(N3) cost in the
Cholesky decomposition. However, once they are trained and stored, prediction is very fast and
computing the log-likelihood is of the order of milliseconds. Moreover, one can use the fixed αs
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Figure 1: The left panel shows the accuracy for the linear matter power spectrum, evaluated at z = 0
over a wavenumber range of k ∈ [10−4, 50] in units of Mpc−1 and the right panel shows the accuracy
for the quantity, G evaluated over the redshift range of z ∈ [0.0 3.0]. These quantities can be robustly
calculated within an accuracy of 1%.

and the kernel pre-trained hyperparameters in any GP implementation irrespective of whether we
use numpy, pyTorch, TensorFlow and JAX. Moreover, the priors are sufficiently broad that the
emulation framework can be used for different probes, for example, weak lensing as in this context.

Figure 2 compares the marginalised 1D and 2D distributions of the cosmological parameters using
the emulator with Cobaya and NUTS. Under this configuration, the potential scale reduction factor
is equal to 1.00 for all parameters. Sampling the posterior with NUTS takes ∼ 13 hours for two
chains with numpyro using a single GPU. Alternatively, a single run using Cobaya, whether with the
emulator or EH in JAX− COSMO, takes approximately 5 hours to sample the posterior. Note that the
chains generated by both samplers did not contain the same number of samplers, and therefore the
difference in time above is not reflective of their relative performance.

Moreover, in order to quantify the difference between the inferred parameters with either sampler, we
use the “difference of Gaussians” statistic:

δ =
|µNUTS − µCobaya|√
σ2
NUTS + σ2

Cobaya

. (2)

The maximum difference among the set of parameters considered in this experiment is ∼ 0.1. We
also compute the average of the scaled effective sample size, Neff, to compare the samplers. We
define the efficiency gain as:

γ =
Neff, NUTS

Neff, Cobaya
. (3)

The relative gain in efficiency when using NUTS compared to Cobaya is O(10). When using
Limberjack and NUTS in Turing.jl, Ruiz-Zapatero et al. (2023) estimated a gain in Neff of ∼ 1.7,
compared to the samples obtained using Metropolis-Hastings implemented in Cobaya (García-García
et al. 2021). In addition, when using reverse mode automatic differentiation (the default setup in
numpyro), the cost of a single gradient calculation to the cost of a single likelihood evaluation is
∼ 4.5 (either with the emulator or EH). The gain in efficiency is better compared to the cost of the
gradient evaluation. With julia, Ruiz-Zapatero et al. (2023) found this ratio to be ∼ 5.5 when
using forward mode automatic differentiation. Note that the differences in the values above can be
attributed to the fact that different samplers will, in general, have different implementations. Taking
into account the more expensive gradient evaluation, we find that the overall efficiency gain of NUTS
with respect to Cobaya, when measured in terms of computing time on the same platform, is ∼ 2.

In both the multivariate normal distribution and the Rosenbrock function examples, the potential
scale reduction factor is close to one when either NUTS or Cobaya is used to sample the function.
However, with a tricky function such as the Rosenbrock function, we find that the potential scale
reduction factor gets worse (R ∼ 1.0− 1.4) with Cobaya as the dimensionality increases. Moreover,
the acceptance probability when NUTS is used is always ≳ 0.7 with either the multivariate normal
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Figure 2: The 1D and 2D marginalised posterior distribution of all the cosmological parameters. The
green contours show the distribution when the emulator is used with the Cobaya sampler while the
solid black curves correspond to the setup where NUTS is used for sampling the posterior distribution.
There is negligible difference in the posterior when comparing Cobaya and NUTS. The left panel
shows the posterior obtained when using the DES data while the right panel shows the contours
obtained with the simulated LSST-like data.

or the Rosenbrock function. On the other hand, Cobaya has an acceptance probability of ∼ 0.3
when sampling the multivariate normal distribution. With the Rosenbrock function, the acceptance
probability varies from ∼ 0.17 to ∼ 0.1 as the dimensionality increases.

Based on the experiments performed with the analytical, we find that NUTS always produces more
effective samples, irrespective of the function employed. With the Rosenbrock function depicting
non-Gaussianity – characterized by its non-linear and asymmetric shape – it is expected that samplers
will result in a reduction of Neff. For d ≤ 100, both samplers are able to recover the correct shape
of the posterior distribution. However, NUTS is more likely to scale better to higher dimensions
(d > 100) as a result of its consistent high Neff.

5 Challenges and Future Work

A notable challenge we faced was ensuring compatibility between CUDA and JAX. In this work, we
used CUDA 11 and JAX version 0.3.25, but updating to the latest versions of CUDA and JAX could
introduce complications. From a scientific standpoint, we aim to identify a problem with dimensions
(d > 100) where the methodology described here can highlight the significance of gradient-based
samplers.

6 Conclusion

In this work, we have performed a quantitative assessment of different aspects related to emulation and
gradient-based samplers. We integrated a linear matter power spectrum emulator into JAX− COSMO,
achieving ∼ 1% accuracy with just 1000 training points. This is different with deep learning
frameworks that require significantly more data for similar accuracy. Constraints from NUTS and
Cobaya samplers show strong agreement. In the DES analysis, NUTS achieved a 10-fold efficiency
gain for a 25-parameter system, though this reduces to a factor of 2 when accounting for gradient
computation costs. NUTS excels in high-dimensional spaces (d > 100), showing better convergence
and effective sample size than Cobaya. For a 37-dimensional LSST-like survey, NUTS is twice as
effective as Cobaya. An in-depth examination using the Rosenbrock function confirms the sampling
efficiency gain of NUTS. This suggests that NUTS is not only advantageous in terms of convergence
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and effective sample size but also provides improved exploration of complex, non-trivial functions.
Overall, these findings highlight the contexts where NUTS outperforms traditional non-gradient based
samplers, making it a valuable tool for Bayesian inference in a wide range of applications.
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