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Abstract

Correcting for detector effects in experimental data, particularly through unfolding,
is critical for enabling precision measurements in high-energy physics. However,
traditional unfolding methods face challenges in scalability, flexibility, and de-
pendence on simulations. We introduce a novel approach to multidimensional
object-wise unfolding using conditional Denoising Diffusion Probabilistic Models
(cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible posterior
sampling approach, incorporating distribution moments as conditioning informa-
tion, which exhibits a strong inductive bias that allows it to generalize to unseen
physics processes without explicitly assuming the underlying distribution. Our re-
sults highlight the potential of this method as a step towards a “universal” unfolding
tool that reduces dependence on truth-level assumptions.

1 Introduction

Experimental data in high-energy physics (HEP) presents a distorted picture of the true physics
processes due to detector effects. Unfolding is an inverse problem solved through statistical inference
that aims to correct the detector distortions of the observed data to recover the true distribution of
particle properties. This process is essential for the validation of theories, new discoveries, precision
measurements, and comparison of experimental results between different experiments.

A standard approach to unfolding [1] begins with a simulated particle distribution ftrue(x) that
characterizes the underlying physics process of interest, and a detailed detector simulation that
describes how detector effects distort the particle property distributions. These distortions affect the
kinematic quantities of particles incident to the detector, resulting in an altered particle distribution
fdet(y). Mathematically, this relationship can be written as a Fredholm integral equation of the first
kind,
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fdet(y) =

∫
dxP (y|x) ftrue(x) (1)

where P (y|x) is the conditional probability distribution describing the detector effects. One approach
to unfolding is to estimate the inverse process P (x|y), which can be expressed using Bayes’ theorem:

P (x|y) = P (y|x)ftrue(x)

fdet(y)
. (2)

In this context, a detector dataset can be unfolded by sampling from the posterior P (x|y) to recover
the distribution ftrue(x). The detector effects P (y|x) are assumed to be the same for any physics
process, and it is clear that the posterior P (x|y) depends on the prior distribution ftrue(x). Although
one can sample from ftrue(x) through the use of particle generators, there is no guarantee that any
particular assumed ftrue(x) accurately represents the underlying physics of the specific data to unfold.
Consequently, unfolding results can be significantly influenced by the assumed underlying distribution,
potentially introducing bias or limiting the method’s ability to detect unexpected phenomena. This
reveals one of the main challenges in developing a universal unfolder, which aims to remove detector
effects from any set of measured data agnostic of the process of interest, ideally with no bias towards
any prior distribution.

Related Work: Traditional unfolding methods, based on the linearization of the problem, face
limitations such as requiring binned histograms and an inability to unfold multiple observables
simultaneously. Various machine learning approaches have emerged in recent years to address these
challenges. These include re-weighting methods like OmniFold [2] [3], as well as several generative
approaches. Among the generative techniques are those using Generative Adversarial Networks
(GANs) [4] [5], conditional invertible neural networks [6] [7], and latent variational diffusion models
[8] [9]. Additionally, distribution mapping techniques have been developed, such as Schrödinger
bridges [10] and direct diffusion models [11]. For a comprehensive overview of these methods, see
the recent survey by [12]. Each new method has made further strides in unfolding and shown the
advantages in machine learning based approaches compared to traditional techniques.

Objectives: This work seeks to overcome the limitations of traditional unfolding methods while
expanding upon the benefits offered by machine learning-based approaches. The proposed approach
builds upon the advantages of object-wise unfolding, a technique common in machine learning-based
unfolding methods, which reconstructs the properties of individual particles or physics objects rather
than operating on binned distributions. Through object-wise unfolding, some of the challenges posed
by traditional methods can be addressed: the impact of the experimenter’s selections and cuts on the
unfolded results can be minimized, while underlying correlations between the unfolded distributions
are preserved.

We first present a “dedicated” unfolder, an approach similar to many existing machine learning-based
methods, which learns and applies a specific posterior distribution for a particular physics process.
This approach serves as an effective solution for well-understood processes and provides a benchmark
for subsequent work. Building upon this foundation, the aim is to develop a “generalizable” unfolder
to handle a wide range of physics processes and observables, including those not explicitly seen
during training. This generalization capability is crucial for enhancing the method’s applicability
across various physics scenarios, while ideally avoiding dependence on specific physics generator
models. This amounts to addressing both the bias and generalization problems in the solution to
unfolding. Such a method would enable the unfolding of distributions for a wide range of processes,
including those involving yet-undiscovered particles in new physics searches at high-energy colliders.

An effective new unfolding method should achieve an accuracy that falls within the typical uncertainty
range of measurements where unfolding is applied, while simultaneously preserving the benefits of
object-wise unfolding, such as maintaining correlations between kinematic quantities, and offering
generalization capabilities. With these objectives, the goal is to contribute a more flexible, accurate,
and widely applicable unfolding tool to the high-energy physics community.

Our Contribution: We introduce a novel approach using conditional Denoising Diffusion Prob-
abilistic Models (cDDPM) to unfold detector effects in HEP data. We demonstrate that a single
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cDDPM, trained on diverse particle data and incorporating statistical moments of various distributions,
can serve as a “generalized” unfolder by performing multidimensional object-wise unfolding for
multiple physics processes without explicit assumptions about the underlying distribution, thereby
minimizing bias. Figure 1 illustrates the effectiveness of this approach in two key scenarios. The left
panel shows an “unknown” process created by combining data from multiple known processes (40%
tt̄, 35% W+jets, and 25% leptoquark). Here, the generalized unfolder outperforms the dedicated
unfolder, which is designed to unfold only a single specific physics process (in this case tt̄, selected
because it forms the largest component of the unknown process). The right panel provides further
evidence of the generalized unfolder’s flexibility, demonstrating its ability to accurately unfold data
from graviton production (generated in the context of large extra-dimension scenarios [13]) accom-
panied by jets, a completely new physics process absent from the training phase. The accuracy of
the generalized approach illustrates its ability to handle previously unseen physics processes without
assuming an underlying distribution. This flexibility demonstrated by the generalized unfolder is
beneficial for new physics searches and studying processes not accurately modeled by current theories,
providing an unfolding solution to the bulk of the data analyses performed at high-energy colliders.
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Figure 1: Unfolding results using the generalized cDDPM unfolder. The left panel shows performance
on data from an “unknown” physics process combining multiple processes. The generalized unfolder
(orange) demonstrates superior performance compared to the dedicated unfolder (green), which
was trained assuming a specific physics process. The right panel shows the generalized unfolder
successfully handling data from graviton production accompanied by jets, a new physics process
completely absent from the training data.

2 Methods

2.1 Our Unfolding Approach

While an ideal universal unfolder cannot be achieved, this approach seeks to enhance the inductive
bias of the unfolding method to improve generalization to cover various posteriors pertaining to
different physics data distributions. The posteriors for two different physics processes i and j are
related by a ratio of the probability density functions of each process,

Pi(x|y)
Pj(x|y)

=
f i

true(x) f
j

det(y)

f i
det(y) f

j
true(x)

. (3)

If the posterior for a given physics process can be learned, extrapolation to unseen posteriors becomes
possible if the priors ftrue(x) and detector distributions fdet(y) can be approximated or written in a
closed form. Although these functions have no analytical form, key features can be approximated
using the first moments of these distributions. By making use of these moments as conditionals, a
more flexible unfolder can be created that is not strictly tied to a selected prior distribution, and enables
interpolation and extrapolation to unseen posteriors based on the provided moments. Consequently,
this unfolding tool gains the ability to handle a wider range of physics processes and enhances the
generalization capabilities, making it a more versatile tool for unfolding in various high energy
physics applications.
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2.2 Denoising Diffusion Probabilistic Models

The proposed unfolding approach calls for a flexible generative model, and denoising diffusion
probabilistic models (DDPMs) [14] lend themselves naturally to this task. DDPMs learn via a
reversible generative process which can be conditioned directly on the detector data values and on the
moments of the distribution fdet(y), providing a natural way to sample from P (x|y) for unfolding.
A DDPM comprises two parts: a fixed forward process that gradually adds Gaussian noise to data
samples, and a learned reverse process that denoises the data.

The implementation uses a conditional DDPM with direct conditioning, where sampling is done
according to the learned conditional distribution. The loss function for the conditional denoising
process is:

L(θ) = Et, ϵ,xt,y

[∥∥∥ϵ− ϵθ, (t,xt,y)
∥∥∥2] . (4)

where ϵ is the noise added during the forward process and ϵθ(t,xt,y) is the noise predicted by the
model. More details on cDDPMs and a derivation of this loss can be found in Appendix A.

This approach differs from the commonly used guided conditioning methods, where the predicted
noise is a weighted combination of the conditional and unconditional predictions: ϵ̃θ(t,xt,y) = (1+
w) ϵθ(t,xt,y)− w ϵθ(t,xt) [15]. The cDDPM can be seen as a special case of guided conditioning
with the guidance weight w = 0, allowing sampling from P (x|y) without explicitly evaluating the
prior distribution over the data space. This makes the cDDPM a natural choice for applications like
unfolding where the prior is unknown or difficult to model.

2.3 Unfolding with cDDPMs

Our study focuses on QCD jets, narrow streams of hadrons produced by quark or gluon hadronization
in high-energy particle collisions. Using the PYTHIA event generator [16], jet datasets are generated
for various physics processes (tt̄, W+jets, Z+jets, dijet, leptoquark, and graviton) under different
settings. These “truth-level” jets are then passed through a detector simulation framework to produce
“detector-level” jets, mimicking particle interactions within a detector.

Part 1: Dedicated Unfolder We first consider how to setup a dedicated cDDPM unfolder (without
use of the distributional moments) that can achieve multidimensional object-wise unfolding for
a single physics process. The jet kinematic information is defined with a vector that includes
the transverse momentum (pT ), pseudorapidity (η), azimuthal angle (ϕ), and 4-momentum vector
(E, px, py, pz). These jet vectors are defined both at truth-level as x and detector-level as y. A
cDDPM can be trained with data pairs (x,y) as input to learn the posterior distribution P (x|y). To
unfold, the detector data y is given as input and the cDDPM acts as a posterior sampler of P (x|y).

Part 2: Generalized Unfolder We aim to enhance the inductive bias through use of the distri-
butional moments to attain a generalized cDDPM unfolder that encompasses a broader range of
posteriors, enabling the unfolding of data from diverse physics processes. To achieve this, the training
dataset is expanded to include jets from multiple different physics simulations. For each simulation,
the first 6 moments of the pT distribution are calculated and appended to the corresponding jet
vectors. In slight abuse of notation, we now denote these augmented jet vectors (including distribu-
tion moments) as x at truth-level and y at detector-level. By training with these diverse data pairs
(x,y), the cDDPM is able to represent multiple posteriors corresponding to the distributions in the
expanded training dataset, distinguishable through the added distributional information provided by
the moments. More details on the training dataset, procedure, cDDPM parameters, and pseudocode
are provided in Appendix B.

3 Results and Discussion

The Wasserstein-1 distance [17], “Binned χ2/DoF”, and “
∑
|ratios− 1|” are metrics employed to

evaluate the unfolding performance, with all three metrics appearing in the figures.

In Figure 1, the left panel showcases results from an “unknown” process dataset, created by combining
jets from the tt̄, W+jets, and leptoquark test datasets. Here, the moments used for conditioning are

4



10 6

10 5

10 4

10 3

10 2

10 1

100

d
/d

x

tt (CT14lo, Vincia) 

truth              Wasserstein:        Binned 2/DoF:      |ratios - 1|:
detector            = 24.18              = 18923               = 8.62
generalized       = 0.55                = 5.80                = 0.28
dedicated          = 0.35                = 2.07                = 0.12

100 200 300 400 500
pT [GeV]

0.8
0.9
1.0
1.1
1.2

ra
tio

s

generalized/truth
dedicated/truth

10 5

10 4

10 3

10 2

10 1

100

d
/d

x

Leptoquark (NNPDF23) 

truth              Wasserstein:        Binned 2/DoF:      |ratios - 1|:
detector            = 20.26              = 6829               = 8.88
generalized       = 0.25                = 7.49                = 0.28
dedicated          = 0.22                = 3.43                = 0.21

0 50 100 150 200 250 300 350 400
px [GeV]

0.8
0.9
1.0
1.1
1.2

ra
tio

s

generalized/truth
dedicated/truth

10 6

10 5

10 4

10 3

10 2

10 1

d
/d

x

W+jets (CT14lo) 

truth              Wasserstein:        Binned 2/DoF:      |ratios - 1|:
detector            = 84.96              = 2353               = 10.53
generalized       = 1.57                = 2.26                = 0.37
dedicated          = 1.27                = 2.68                = 0.40

0 250 500 750 1000 1250 1500 1750 2000
pz [GeV]

0.8
0.9
1.0
1.1
1.2

ra
tio

s

generalized/truth
dedicated/truth

Figure 2: Unfolding results of jet vector components across diverse physics processes. We compare
our generalized cDDPM unfolder (orange) against process-specific dedicated unfolders (green).

calculated from the combined dataset as a whole, presenting the generalized unfolder with previously
unseen distributional characteristics. The generalized unfolder demonstrates superior performance
when unfolding this unknown process compared to a dedicated unfolder assuming a similar, yet
incorrect, underlying tt̄ process. The right panel demonstrates that the generalized unfolder suc-
cessfully reconstructs true distributions from graviton production data (a physics process entirely
absent from its training data), showing its ability to handle completely new physics scenarios. While
the generalized unfolder’s advantage is expected for unknown processes, comparable performance
to dedicated unfolders on known processes is also desired. To validate the framework’s effective-
ness, both unfolders are compared across various test datasets, and Table 1 presents the resulting
multidimensional Wasserstein distances to their true distributions.

Figure 2 illustrates unfolding results for various jet observables across different physics processes,
showcasing the generalized unfolder’s versatility. In Figure 3, the model’s efficacy is further demon-
strated with two tests: (1) reconstructing jet mass from unfolded results, indicating well-preserved
correlations among jet vector components, and (2) reconstructing event-level observables from
unfolded quantities, achieved by tracking event numbers through object-wise unfolding.
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Figure 3: Reconstruction of jet mass and hadronic recoil
(event-level observable) from unfolded data.

Process Wasserstein Distances
Det. Gen. Ded.

Graviton 31.35 0.64 N/A
Unknown 28.20 0.744 2.677
tt̄ 26.43 0.565 0.196
LQ 32.72 0.457 0.155
W+jets 31.15 0.304 0.353

Table 1: Comparison of Wasserstein dis-
tances for detector-level data and un-
folded results using generalized and ded-
icated unfolders across different physics
processes.

While this approach shows promise, we acknowledge key limitations. Addressing particles outside
detector thresholds and accounting for systematic and experimental uncertainties are crucial improve-
ments needed to fully realize the method’s potential in practical applications. An important constraint
of our current implementation is that while correlations between object vector components are pre-
served, the model lacks access to event-wise information. This limitation impacts the reconstruction
accuracy of certain event-level observables, since inter-object relationships within an event are not
captured. We leave these improvements for future work.

To conclude, our results confirm the versatility of the generalized cDDPM unfolder across diverse
physics processes. This non-iterative and flexible posterior sampling approach exhibits a strong
inductive bias that allows the cDDPM to generalize to unseen processes without explicitly assuming
the underlying physics distribution, setting it apart from other unfolding techniques so far.

5



Acknowledgments and Disclosure of Funding

This work has been made possible thanks to the support of the Department of Energy Office of Science
through the Grant DE-SC0023964. Shuchin Aeron and Taritree Wonhjirad would also like to ac-
knowledge support by the National Science Foundation under Cooperative Agreement PHY-2019786
(The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/).

References
[1] Volker Blobel. An unfolding method for high energy physics experiments, 2002. URL

https://arxiv.org/abs/hep-ex/0208022.

[2] Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse
Thaler. Omnifold: A method to simultaneously unfold all observables. Phys. Rev. Lett., 124:
182001, 5 2020. doi: 10.1103/PhysRevLett.124.182001. URL https://link.aps.org/doi/
10.1103/PhysRevLett.124.182001.

[3] Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, Adi Suresh, and
Jesse Thaler. Scaffolding simulations with deep learning for high-dimensional deconvolution,
2021. URL https://arxiv.org/abs/2105.04448.

[4] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, and Ramon Winterhalder.
How to gan away detector effects. SciPost Physics, 8(4), April 2020. ISSN 2542-4653. doi: 10.
21468/scipostphys.8.4.070. URL http://dx.doi.org/10.21468/SciPostPhys.8.4.070.

[5] Kaustuv Datta, Deepak Kar, and Debarati Roy. Unfolding with generative adversarial networks,
2018. URL https://arxiv.org/abs/1806.00433.

[6] Mathias Backes, Anja Butter, Monica Dunford, and Bogdan Malaescu. An unfolding method
based on conditional invertible neural networks (cinn) using iterative training, 2024. URL
https://arxiv.org/abs/2212.08674.

[7] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rousselot, Ramon
Winterhalder, Lynton Ardizzone, and Ullrich Köthe. Invertible networks or partons to detector
and back again. SciPost Physics, 9(5), November 2020. ISSN 2542-4653. doi: 10.21468/
scipostphys.9.5.074. URL http://dx.doi.org/10.21468/SciPostPhys.9.5.074.

[8] Alexander Shmakov, Kevin Greif, Michael Fenton, Aishik Ghosh, Pierre Baldi, and Daniel
Whiteson. End-to-end latent variational diffusion models for inverse problems in high energy
physics, 2023. URL https://arxiv.org/abs/2305.10399.

[9] Alexander Shmakov, Kevin Greif, Michael James Fenton, Aishik Ghosh, Pierre Baldi, and
Daniel Whiteson. Full event particle-level unfolding with variable-length latent variational
diffusion, 2024. URL https://arxiv.org/abs/2404.14332.

[10] Sascha Diefenbacher, Guan-Horng Liu, Vinicius Mikuni, Benjamin Nachman, and Weili Nie.
Improving generative model-based unfolding with schrödinger bridges, 2023. URL https:
//arxiv.org/abs/2308.12351.

[11] Anja Butter, Tomas Jezo, Michael Klasen, Mathias Kuschick, Sofia Palacios Schweitzer, and
Tilman Plehn. Kicking it off(-shell) with direct diffusion, 2024. URL https://arxiv.org/
abs/2311.17175.

[12] Nathan Huetsch, Javier Mariño Villadamigo, Alexander Shmakov, Sascha Diefenbacher, Vini-
cius Mikuni, Theo Heimel, Michael Fenton, Kevin Greif, Benjamin Nachman, Daniel Whiteson,
Anja Butter, and Tilman Plehn. The landscape of unfolding with machine learning, 2024. URL
https://arxiv.org/abs/2404.18807.

[13] S. Ask, I.V. Akin, L. Benucci, A. De Roeck, M. Goebel, and J. Haller. Real emission and
virtual exchange of gravitons and unparticles in pythia8. Computer Physics Communications,
181(9):1593–1604, September 2010. ISSN 0010-4655. doi: 10.1016/j.cpc.2010.05.013. URL
http://dx.doi.org/10.1016/j.cpc.2010.05.013.

6

http://iaifi.org/
https://arxiv.org/abs/hep-ex/0208022
https://link.aps.org/doi/10.1103/PhysRevLett.124.182001
https://link.aps.org/doi/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/2105.04448
http://dx.doi.org/10.21468/SciPostPhys.8.4.070
https://arxiv.org/abs/1806.00433
https://arxiv.org/abs/2212.08674
http://dx.doi.org/10.21468/SciPostPhys.9.5.074
https://arxiv.org/abs/2305.10399
https://arxiv.org/abs/2404.14332
https://arxiv.org/abs/2308.12351
https://arxiv.org/abs/2308.12351
https://arxiv.org/abs/2311.17175
https://arxiv.org/abs/2311.17175
https://arxiv.org/abs/2404.18807
http://dx.doi.org/10.1016/j.cpc.2010.05.013


[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.
URL https://arxiv.org/abs/2006.11239.

[15] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://
arxiv.org/abs/2207.12598.

[16] Christian Bierlich, Smita Chakraborty, Nishita Desai, Leif Gellersen, Ilkka Helenius, Philip
Ilten, Leif Lönnblad, Stephen Mrenna, Stefan Prestel, Christian T. Preuss, Torbjörn Sjöstrand,
Peter Skands, Marius Utheim, and Rob Verheyen. A comprehensive guide to the physics and
usage of pythia 8.3, 2022. URL https://arxiv.org/abs/2203.11601.

[17] Cédric Villani. The wasserstein distances, 2009. URL https://doi.org/10.1007/
978-3-540-71050-9_6.

[18] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79 – 86, 1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.
1214/aoms/1177729694.

Appendices

A cDDPM Loss Derivation

In the proposed cDDPM, the forward process is a Markov chain that gradually adds Gaussian noise
to the data according to a variance schedule β.

q(xt|xt−1) := N (xt ;
√
1− βt xt−1 , βt I) (5)

To recover the original sample from a Gaussian noise input, this process needs to be reversed. This can
be achieved through the use of a model pθ which corresponds to the joint distribution pθ(x0:T |y) =
pθ(x0, x1, ...xT |y), and it is defined as a Markov chain with learned Gaussian transitions starting at
p(xT |y) = N (xT ; 0, I)

pθ (x0:T |y) := p(xT |y)
T∏

t=1

pθ (xt−1|xt ,y) (6)

pθ(xt−1|xt ,y) := N
(
xt−1 ;µθ(t,xt,y), Σθ(t,xt,y)

)
(7)

where µθ represents the learned mean, and Σθ represents the learned covariance of the Gaussian
transitions, which vary with time step t:

Σθ(t,xt,y) = σ2I, σ2 = βt. (8)

Training involves learning the reverse Markovian transitions that maximize the likelihood of the
training samples, which is equivalent to minimizing the variational upper bound on the negative log
likelihood. This negative log likelihood can be expressed in terms of the Kullback-Leibler (KL)
divergence [18], a statistical measure of the difference between two probability distributions P and
Q:

DKL(P∥Q) =
∑
x∈X

P (x)

(
log

P (x)

Q(x)

)
(9)
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Applying this, the variational bound on the negative log likelihood can be expressed as:

E
[
− log pθ (x0|y)

]
≤ E

[
− log pθ (x0|y)

]
+DKL (q(x1:T |x0)∥pθ(x1:T |x0,y))

= E
[
− log pθ (x0|y)

]
+ Eq

[
log

q(x1:T |x0)

pθ (x1:T |x0,y)

]
= E

[
− log pθ (x0|y)

]
+ Eq

[
log

q(x1:T |x0)

pθ (x0:T |y)/pθ(x0|y)

]
= E

[
− log pθ (x0|y)

]
+ Eq

[
log

q(x1:T |x0)

pθ (x0:T |y)

]
+ E

[
log pθ (x0|y)

]
= Eq

[
− log

pθ(x0:T |y)
q(x1:T |x0)

]

= Eq

− log p(xT |y) −
∑
t≥1

log
pθ(xt−1|xt,y)

q(xt|xt−1)

 := L

(10)

Following the similar derivation provided in [14], this loss can then be rewritten using the KL-
divergence

L = Eq

[
− log

pθ(x0:T |y)
q(x1:T |x0)

]

= Eq

− log p(xT |y) −
∑
t≥1

log
pθ(xt−1|xt,y)

q(xt|xt−1)


= Eq

[
− log p(xT |y) −

∑
t>1

log
pθ(xt−1|xt,y)

q(xt|xt−1)
− log

pθ(x0|x1,y)

q(x1|x0)

]

= Eq

[
− log p(xT |y) −

∑
t>1

log
pθ(xt−1|xt,y)

q(xt−1|xt,x0)
· q(xt−1|x0)

q(xt|x0)
− log

pθ(x0|x1,y)

q(x1|x0)

]

= Eq

[
− log

p(xT |y)
q(xT |x0)

−
∑
t>1

log
pθ(xt−1|xt,y)

q(xt−1|xt,x0)
− log pθ(x0|x1,y)

]

= Eq

DKL

(
q(xT |x0) ∥ p(xT |y)

)︸ ︷︷ ︸
LT

+
∑
t>1

DKL

(
q(xt−1|xt,x0) ∥ pθ(xt−1|xt,y)

)︸ ︷︷ ︸
L1:T−1

− log pθ(x0|x1,y)︸ ︷︷ ︸
L0


(11)

The term LT is a constant, as it is the KL-divergence between two distributions of pure noise, and the
L0 term is a final denoising step with no comparison to the forward process posteriors. For the term
L1:T−1, the forward process posteriors can be written as

q(xt+1|xt,x0) = N (xt+1; µ̃t(xt,x0), β̃tI) (12)

where β̃t =
1− ᾱt−1

1− ᾱt
βt, ᾱt =

t∏
s=1

(1− βs)

and µ̃t(xt,x0) =

(
βt
√
ᾱt−1

1− ᾱt
x0 +

√
ᾱt(1− ᾱt−1)

(1− ᾱt)
xt

)
.

(13)

Using this forward process posterior together with the reverse process posterior defined in Equation
A.3, a parametrization for µθ(xt, t,y) is introduced that aims to predict µ̃t(xt,x0). With this the
loss becomes

Lt−1 = E
[

1

2σ2
t

∥ µ̃t (xt,x0)− µθ (t,xt,y) ∥2
]
+ C (14)
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where C is a constant, and µ̃t and µθ can be reparametrized using xt =
√
ᾱt x0 +

√
1− ᾱt ϵ and

reduced to

Lt−1 = Eϵ,x0,y

[
β2
t

2σ2
tαt(1− ᾱt)

∥ ϵ− ϵθ (t,
√
ᾱtx0 +

√
1− ᾱtϵ,y) ∥2

]
. (15)

Finally we can write a simplified version of the loss with the terms differentiable in θ as

Lsimple(θ) = Eϵ,xt,y

[
∥ ϵ− ϵθ (t,

√
ᾱtx0 +

√
1− ᾱtϵ,y) ∥2

]
= Eϵ,xt,y

[
∥ ϵ− ϵθ (t,xt,y) ∥2

]
.

(16)

This derivation shows that in the cDDPM formulation, the task of learning a posterior distribution
reduces to minimizing a simple mean squared error between added and predicted noise. This allows
for estimation of the posterior without requiring explicit evaluation of the prior distribution.

B Model Details and Pseudocode

During inference, the inputs are given to the denoising process are the vector y and random noise
values xT ∼ N (0, I). The denoising process removes noise from xT in T steps according to the
learned conditional distribution pθ(x0:T |y). Pseudocode for the training and sampling algorithms
can be seen in Figures 4 and 5.

The cDDPM architecture consists of a Multi-Layer Perceptron (MLP), a feedforward neural network,
with approximately 1 million trainable parameters. It comprises three main components: an initial
linear layer with Gaussian Error Linear Unit (GELU) activation, which provides smooth non-linear
transformations, a time step embedding layer, and a series of linear layers with GELU activations.
The network takes as input the noised data and the time step. It first processes the input through
a 256-unit hidden layer, then adds a learned time step embedding. This combined representation
is passed through four 512-unit hidden layers, followed by a 256-unit layer. Skip connections are
employed between the input and output of the main block. The final output layer predicts the noise at
the given time step. Dropout (rate 0.01) is applied after each linear layer to prevent overfitting during
training.

The diffusion process employs a linear variance schedule over T = 500 time steps. The schedule starts
with an initial noise level β1 = 1e-4 at the first step and increases linearly to βT = 0.02 at the final
step. The model is trained using the Adam optimizer with an initial learning rate of 3e-4. To improve
convergence and performance, a linear learning rate scheduler is employed. It starts at the initial rate
and linearly decreases to 1% of the initial rate (3e-6) by the end of training.

The model is trained for 5000 epochs with a batch size of 2048. Using an NVIDIA A100 GPU, the
training procedure on our full dataset or 1.8 million data points completes in approximately 3 hours.
Once trained, the model demonstrates efficient inference capabilities. Unfolding a dataset of 1 million
data points takes approximately 3 minutes on the A100 GPU, with processing time scaling linearly
with the number of jets. Notably, this model functions as a generalizing unfolder, eliminating the
need for retraining when applying it to various different datasets.
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Algorithm 1 Conditional DDPM: Training
Input: dataset {x0, y}, variance schedule β1, ... βT

t← Uniform({1, ... , T})
ᾱt ←

∏t
s=1(1− βs)

ϵ← N (0, I)
Repeat

a) xt ←
√
ᾱt x0 +

√
1− ᾱt ϵ

b) Calculate loss, L = ||ϵ− ϵθ
(
t,xt ,y

)
||2

c) Update θ via ∇θL

Until converged

Figure 4: The training procedure for the conditional DDPM unfolding model is presented. The
algorithm trains on data samples {x0, y}. In step (a) Gaussian noise ϵ is added to x0 over T timesteps
according to the variance schedule. The model parameterized by θ is trained to estimate this added
noise by observing the noisy states xt at a timestep t and the condition y.

Algorithm 2 Conditional DDPM: Sampling
Input: detector-level data vector y, variance schedule β1, ... βT

xT ← N (0, I)
For t = T, ..., 1 do

a) αt ← 1− βt, ᾱt ←
∏t

s=1 αs, σt ←
√
βt

b) z← N (0, I) if t > 1, else z← 0

c) xt−1 ← 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ

(
t,xt ,y

))
+ σt z

Return x0

Figure 5: The trained conditional DDPM model serves as a posterior sampler, generating unfolded
truth-level samples x0 given condition y. Starting from pure noise xT , the conditioned reverse
process denoises xt at each timestep by removing the estimated injected noise. Here σt ≡

√
βt since

this choice is optimal for a non-deterministic x0.
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