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Abstract

Galaxies evolve hierarchically through merging with lower-mass systems and the
remnants of destroyed galaxies are a key indicator of the past assembly history
of our Galaxy. However, accurately measuring the properties of the accreted
galaxies and hence unraveling the Milky Way’s (MW) formation history is a
challenging task. Here we introduce CASBI (Chemical Abundance Simulation
Based Inference), a novel inference pipeline for Galactic Archeology based on
Simulation-based Inference methods. CASBI leverages on the fact that there is a
well defined mass-metallicity relation for galaxies and performs inference of key
galaxy properties based on multi-dimensional chemical abundances of stars in the
stellar halo. Hence, we recast the problem of unraveling the merger history of the
MW into a SBI problem to recover the properties of the building blocks (e.g. total
stellar mass and infall time) using the multi-dimensional chemical abundances of
stars in the stellar halo as observable. With CASBI we are able to recover the full
posterior probability of properties of building blocks of Milky Way like galaxies.
We highlight CASBI’s potential by inferring posteriors for the stellar masses of
completely phase mixed dwarf galaxies solely from the 2d-distributions of stellar
abundance in the iron vs. oxygen plane and find accurate and precise inference
results.

1 Motivation: The reconstruction of the assembly history of the Milky Way

Inferring the assembly history of the Milky Way (MW) is a challenging task, even in the era of the
astrometric Gaia mission and its 6 dimensional phase space data, and the complementary chemical
information obtained from wide-field spectroscopic programs such as GALAH [10], H3 [6], APOGEE
[20], RAVE [24], SEGUE [27], or LAMOST [8]. While the dynamical times of the accreted objects
are on the order of the age of the host galaxy, phase mixing of accreted and in-situ stars will occur and
the phase space only retains part of the information on the original infall parameters. Hence, robustly
identifying distinct structures is challenging, and disentangling the components in fully phase mixed
situations is nearly impossible. On the other hand, stellar chemical abundances are unchanged over
the lifetime of a star serving as unique labels to tag stars. Additionally, the chemical abundance
space is dependent on the star formation history and the total stellar mass of the galaxies leading
to distinct differences in the abundance distribution of different galaxies [e.g. 4]. Very recently, the
crossmatch between astrometric data from Gaia with spectroscopic data allowed for the discovery of
the "Gaia-Sausage-Enceladus" [GSE, 1, 14], a massive accretion event whose remnant now dominates
the observation of the inner stellar halo of our Galaxy. The discovery of this massive structure opened
the door to unveil the merging history of our Galaxy. This work aims to exploit the information
available in modern cosmological simulations to guide an automatic and data driven approach to
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reconstruct the properties of these objects with the use of the Simulation Based Inference [SBI, 7]]
technique.

2 Related Work: Galactic Archaeology with Simulations

In order to characterize the assembly history of the Milky Way (MW) from stellar chemical
abundances alone [9] proposed to use the "CARDs", the chemical abundance ratio distributions
of the stars, obtained from a subsample of accreted objects from the FIRE-2 zoom-in cosmo-
logical simulations of MW-mass galaxies [26]. This method models the host halo as a linear
combination of 2d templates for the joint iron and oxygen abundance: CARDhalo, model(xd) =∑

i

∑
j AijCARDtemp,ij(xd|Msat,i, t100,j), treating each coefficient Aij as the fraction of mass con-

tribution from the accretion event of the template satellite with mass Msat,i and quenching time t100,j .
CARDs tries to recover those coefficients by maximizing a loss that compares the observed abundance
distribution with the combination of the templates. Additionally, this method does not recover full
posterior for the parameters of the accreted objects but rather point estimates. Another approach is
presented in [12], which takes advantage of the mass-metallicity relation to decompose the metallicity
distribution function (MDF) of the host galaxy as a mixture of accreted halo’s MDFs, assuming
Gaussian shape for each of these building blocks. This decomposition relies on the observational
evidence that at the dwarf galaxy mass scale, not only the average metallicity varies with the mass,
but also the width of the MDF [16] where lower mass dwarfs have a wider spread of metallicities.
This method has the fundamental problem of having a variable number of model parameters, making
it difficult to sample in practice. To circumvent this, [12] decided to bin the accreted dwarf galaxies
in luminosity and count the number of contributions from each luminosity bin adopting a nested
sampling scheme to obtain a posterior distribution for the number of galaxies in each luminosity bin.

3 CASBI: Likelihood-free inference of MW’s accretion history

Simulation-based inference The SBI framework has existed along side the more traditional
likelihood based inference methods for quite some years already, having its root in Approximate
Bayes Computation [23]. The main difference between SBI and traditional sampling methods, like
Markov Chain Monte Carlo (MCMC), is that the former do not require the likelihood function to be
known, but rather rely on a simulator to generate synthetic data x from input parameters θ. Inference
networks are then trained based on data-parameters pairs (x,θ). Recent advances of this technique
were made possible by the use of Normalizing Flow models to emulate conditional probability
distributions, a technique know as Neural Density Estimation (NDE) [21]. Following the discussion
presented in [15], in SBI we have the choice to approximate either the Posterior, the Likelihood or
the Likelihood ratio, and this choice depends mostly on the problem that one wants to solve, and in
particular on the dimensionalities of x and θ. In our case, due to the complexity of the Likelihood
distribution of the chemical abundance space, we choose to approximate the Posterior distributions,
and so we adopted the Neural Posterior Estimate (NPE). Another strong choice would have been
to perform Neural Ratio Estimate (NRE), which enables one to avoid specifying an approximating
distribution model and trains a classifier to target the Likelihood ratio. This kind of approach is quite
capable of dealing with cases where both the Likelihood and the Posterior exhibit complicated shapes,
but for our case the simple Gaussian-like shape of the posterior and the high dimensionality of the
observations x led to our choice of using NPE, leaving NRE for future testing.

Simulator model in CASBI CASBI is an SBI package to recover the properties of building blocks
of MW’s stellar halo from observations of the chemical abundance plane. Hence, the data x are
multi-dimensional distributions of chemical abundances. In this proof-of-concept work we restrict
ourselves to only use iron and oxygen. The parameters in CASBI (θ) can be anything describing
the infalling objects, e.g. infall time, stellar mass before infall, gas mass or dark matter mass, etc..
Again, we restrict ourselves to inferring only stellar mass, Mstar, and infall time, τ of the infalling
dwarf galaxies for this first application, so in the end the single accreated object parameter is a vector
θi = (Mstar, τ). As the simulator to generate the data-parameters pairs (x,θ) needed to train the
NPE we rely on the NIHAO cosmological hydrodynamical simulations [25, 2, 3, 5, 4]. NIHAO is
a set of 100 cosmological zoom-in hydrodynamical simulations with halos that range from dwarf
(Mstar ∼ 5 × 109M⊙) to MW (Mstar ∼ 2 × 1012M⊙) mass. Similar to [9] and [12], we rely on
the assumption that once an accreted object falls into the gravitational potential of the host galaxy its
star formation is halted and its abundance distribution is frozen. This means, accreted dwarf galaxies
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will evolve the same as isolated dwarf galaxies prior to infall. Under this assumption, we treat each
dwarf galaxy snapshot as a possible configuration shortly before infall into the host galaxy. In order
to create a subhalo template observation we construct 2D histograms (64× 64 pixels), referred to as
xi, by binning the chemical abundance plane ([O/Fe], [Fe/H])1 for each of the snapshots available in
NIHAO. We additionally filter the galaxies to only consider galaxies with a total stellar mass lower
than the Large Magellanic Cloud (Mstar < 6 × 109M⊙), the largest accreted object in the MW.
The set of all possible subhalos is defined as ’Template Library’. The actual stellar halo observable

xj =
∑Nj

sub
i xj

i used in CASBI is then a superposition of Nsub of these 2D histograms, where the
N j

sub is the number of accreted objects present in the j-th galaxy halo. The actual choice of how to
sample from the ’Template Library’ can be adapted and we use a physically informed approach by
using a analytic luminosity function, taken from [17] and a total stellar mass budget taken from [11]2.
The choice of the total stellar mass budget put a constraint on the maximum subhalo mass. With
this the final goal of CASBI is to recover θji for each of the subhalos in the galactic halo from the
observable xj=

∑
i x

j
i , and gaining insight on how many subhalos there are.

Figure 1: CASBI pipeline. In our analysis the Template Library is fixed to
the NIHAO simulations. The choice of the Template Library incorporates
all the assumptions that we make on the chemical enrichment histories
of Galaxies, the dynamical effects that accreted objects undergo, and the
cosmology, making this part the principal cause of possible misspecification.
We sample non-repeated subhalos aiming to reproduce a Luminosity func-
tion N(< L), [17] with fixed total stellar mass budget of the halo [11]. The
SBI pipeline can incorporate a Surrogate Simulator to perform the sequen-
tial version of NPE. The Observational Realism encapsulates all effects
bridging the gap between simulation and observation (e.g. observational
uncertainties, selection functions, realistic in-situ stars background, etc.).

The CASBI pipeline
Many excellent frame-
works for handling
SBI analysis are al-
ready available, and
CASBI is build on
top of the ltu-ili
python package [15].
In Fig. 1 we show the
CASBI pipeline. The
modularity of the SBI
technique is fully in-
tegrated, allowing to
change all the compo-
nents of this pipeline.
The ’Template Library’
can be adapted to any
other suite of sim-
ulated galaxies (e.g.
[22]), the sampling
scheme can incorpo-
rate different luminos-
ity functions and stel-
lar halo budgets, the
NPE and embedding
network architecture
and hyper-parameters
can be modified to al-
low for higher accu-
racy and posterior cov-
erage thanks to the
optuna grid search implementation, and surrogate models3 (e.g. Free Form Flow FFF [13] surrogates,
or semi-analytical galaxy formation models such as GRUMPY [18]) can be implemented to allow for
the sequential version of the NPE.

Final CASBI model architecture and training data After an extensive hyperparameter tuning
and model evaluation phase using optuna Multi-objective Optimization, we have found that the
’Neural Spline Flow’ (nsf) model with 100 hidden units and 20 transformations available in the
lampe back-end of ltu-ili, achieves both the highest calibration and log posterior. As described in

1They are respectively proxy for α elements abundance and metallcity
2After obtaining the analytic samples we take the first and second Nearest Neighbors (NN) that are within

10% of the sampled mass as our mock subhalo and reduce the total mass budget accordingly.
3We leave the integration of the surrogate model for future work
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[15], a single NDE tends to be overconfident, so it underestimates uncertainty; in order to deal with
this problem one can ensamble multiple models and take a weighted sampling scheme accordingly
to their Posterior value. In our case we ensambled four nsf models to obtain our final results. The
embedding network is a Convolutional Neural Network (CNN) with 3 convolutional, 3 Max Pooling
and 4 fully connected layers with a final embedding dimension of 32 which was obtained during the
hyperparameter tuning phase. We have generated 1000 training set stellar halo and 100 test set stellar
halo with a maximum of 100 subhalos each. The training took ∼ 1 hour on a single NVIDIA A100.

4 Results
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Figure 2: Posterior of the stellar mass Ms for subhalos
with index i belonging to the first stellar halo of the test
set (j = 0). The vertical lines show the true values for
each subhalo.

In Fig. 2 we present the posterior proba-
bility of subhalo masses for a test set
stellar halo. In this example we can
appreciate that the true value for each
of the subhalos falls close to the poste-
rior estimate (i.e. the posterior mean)
and that posterior predictions are rel-
atively peaked around the true values.
This finding makes us confident that
CASBI is able to infer infall properties
of completely phase mixed dwarf galax-
ies solely from chemical abundances
with relatively high precision and accu-
racy. In order to correctly evaluate the
constraining power and the calibration
of the model we report in Fig. 3 the comparison between true and predicted values of the parameters
in the test simulations, the coverage tests using both the percentile-percentile (P-P) plots and the
TARP test [19]4. Looking at 3a, we find good predictive performance on the stellar mass Ms across
the entire mass range probed. Similarly, from Fig. 3b and Fig. 3c we see that the model results
appear to be well calibrated both in the marginal and in the full posterior. We have further tested
CASBI’s ability to infer infall times, τ , from chemical abundances alone but found poor performance
for this task. The lack of predictability of the infall times can be associated to the degeneracy of the
chemical abundances between a massive system that was accreted early on and a less massive system
that was accreted more recently. The integration of the orbital information or using more α elements
(e.g. Mg, Si, Mn) could alleviate this limitation of the model. Both of this integration are left as
future work.
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Figure 3: Inference results on the test set. We show the True vs Prediced values for the stellar
mass Ms part of the θ, with error bars representing the 68% confidence interval in (a), the marginal
posterior coverage for the stellar mass Ms in (b), and full posterior coverage in (c).

4TARP constructs, in the limit of sufficient samples, an estimate of the untractable joint posterior coverage
which is guaranteed to converge to the true posterior coverage. In our case, since the infall time τ component of
θ is not constrained and its posterior resamples the prior distribution, the TARP value is less meaningful than the
marginal coverage plot
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5 Conclusion and limitations
We find that SBI can be applied to the complex task of parameter estimation for accreted dwarf
galaxies in the MW, leveraging only on the chemical information. This allows for the inference of
infall properties even in the case of fully phase mixed objects in the Galactic halo and opens up a
completely new avenue for Galactic Archeology. We find that the information of multi-dimensional
chemical abundance distributions is able to guide the model towards a well calibrated and accurate
reconstruction of the stellar mass of accreted dwarf galaxies. Furthermore, our method avoids the
need to bin the subhalo information as was done in [12]. In this way with CASBI it is possible to
directly perform Bayesian inference on the parameters of each individual subhalo. One limitation of
our method is the simplified scenario in which we have tested CASBI. We are asuming to be able to
perfectly remove background stars and perform inference on a clean halo sample of stars. Additionally,
we have not yet assumed any observational selection function nor observational uncertainties on
stellar abundances. But all this will be implemented in the ’Observational Realism’ component of
CASBI and will be evaluated in future work (see Fig. 1). Our code for CASBI including extensive
documentation is available on GitHub as well as the data to reproduce the results of this paper.
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