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Abstract

X-ray computed tomography (X-CT) is a prominent method to observe the internal
composition of objects. It requires solving the inverse problem of reconstructing
the 3d object from 2d X-ray projections. Thousands of projections are typically
needed to obtain a detailed reconstruction. Therefore, it has never been possible to
reconstruct material deformation under dynamic high-speed loading, which has
impeded our understanding of high-speed deformation processes. In this work,
we address this limitation by combining high-fidelity X-CT with differentiable
neural rendering. In our two-stage approach, we first reconstruct the canonical
volume and then use a neural network to predict a temporal deformation field
with a cubic spline output parametrization. We demonstrate the reconstruction of
deforming objects from very few (two) projections which enables a paradigm shift
in reconstruction of dynamic experiments.

1 Introduction

X-ray computed tomography (X-CT) is an established method in medical imaging and materials
research. [1, 22] To carry out X-CT, it is necessary to rotate the object or detector to obtain thousands
of projections of an object from different angles. In recent years ML methods have helped reduce the
number of required projections and the associated radiation dose. [7] However, while the number
of required projections can be reduced to a few hundred, 3d reconstruction of high-speed dynamic
experiments is still not possible due to the prohibitively high rotation rates which would be required.

Therefore, while much has been discovered about the behaviour of materials (bulk, composites,
architected) at quasi-static conditions using interrupted tomography, whereby deformation sequence
is interrupted at discrete steps [16, 21], 3d characterization of dynamic deformations has never been
possible. Here we address this limitation. As key contributions, we:
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Figure 1: a) Projection geometry. b) Overview of the method.



• adapt neural radiance fields (NeRF) as a canonical model to capture volumetric density
under the assumptions of x-ray attenuation (Beer-Lambert law);

• introduce cubic spline-based deformation field with continuous time parametrization;

• develop a hybrid framework where the high-fidelity X-CT information is combined with
sparse projection views;

• and demonstrate experimentally that these techniques enable the reconstruction of dynamic
deformations from only 2 projections per intermediate timeframe. 2

2 Background and related work

Few-projection reconstruction Projection-based digital volume correlation was introduced by
Leclerc et al. [8] and Taillandier-Thomas et al. [18] where the authors used a canonical reconstruction
of the initial volume and few projections during deformation in combination with a finite element
mesh and elastic regularization. The downside of elastic regularization is that a material model has to
be assumed a priori, which defeats the purpose of DVC if the goal is to find out the material model.
The identification of material model from projection was done by Jailin et al. [6]. However, their
sample was a thin quasi-two-dimensional dogbone specimen of low complexity.

NeRF-based approaches The use of neural rendering techniques has been demonstrated in X-ray
imaging, however most of the approaches rely on pre-training the network on a dataset of objects.
[17, 2, 24] This is normally needed because of the ill-posedness of the problem and high number of
the degrees of freedom. However, we wish to circumvent this limitation. Our goal is to reconstruct
dynamic experiments without pre-training the model on pre-existing database and without assuming
a material model a priori.

Deformable NeRFs Neural radiance approaches for the reconstruction of dynamic scenes can be
broadly classified on the spectrum between full spatio-temporal networks on the one side and methods
which decouple canonical volume from deformation field on the other side of the spectrum. Full
spatio-temporal models are more difficult to optimize and many types of loss are needed, but they are
quite flexible in allowing the topology of the scene to change over time.[23, 3, 9] On the other hand,
two-component frameworks with a canonical field and a deformation field are computationally more
efficient. However, they are limited to scenes in which temporal changes in the scene are topology-
preserving. [12, 5, 20, 10, 13, 14] Other hybrid approaches exist such as low-rank decomposition of
the parameters of spatio-temporal field [11, 4] or higher-dimensional hyperspace [13].

3 Methods

Overview The geometry of the X-ray projection setup is illustrated in Figure 1a. X-rays are emitted
from the source as a conical beam and pass through the sample, after which the attenuated X-ray
intensity is captured at the detector. Multiple projections Xi are captured at corresponding angles
αi. The data consists of projections recorded at 50 deformation timesteps (0 ≤ t ≤ 1). At steps
t = {0, 1}, we record 1024 projections which enables full X-CT reconstruction, while at the other
timesteps only 2 projections separated by 90◦ are captured. For NeRF reconstruction we use a
two-component framework based on a canonical volume and a deformation field similar to the work
by Park et al. [12] (Fig. 1b). The architecture of the canonical volume is based on the default nerfacto
method in nerfstudio framework [19]. Unlike in traditional scene reconstruction, there is no color
output and appearance does not depend on viewing direction. Therefore, the neural radiance field
in our case is a mapping from coordinates to density Θ(X1, X2, X3) → σ. Rendering with the

Beer-Lambert law leads to the equation for transmittance along ray: T = A0 exp
(

−
∫

σ(s)ds
)

.

Hybrid projection and volumetric reconstruction We develop a hybrid method in which we
combine projection loss and volumetric loss (with respect to high-fidelity X-CT reconstructions which
are available at t = 0 and t = 1. The canonical volume is fitted first for t = 0 using a combination
of 128 equispaced projections at t = 0 and high-fidelity X-CT reconstructions (dashed lines in
Fig. 1b). The deformation field is then trained (solid lines) using all available data (128 projections at

2Further visualizations of the results can be found at https://neural-xray.github.io/nerfxray/.
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Figure 2: Simulated experiment vertically stretching a Kelvin lattice. a) 3d model of lattice and
corresponding cross-sections at the highlighted plane. b) Simulated X-ray projections used as training
data. c) Reconstructed displacement field u3 at various timesteps t. Locations near the top of the
object are stretched farther.

t = 0, 128 projections at t = 1, 2 projections per timestep at 0 < t < 1, and high-fidelity X-CT
reconstructions at t ∈ {0, 1}).

Spline-based deformation field Deformation can be expressed as three-component displacement
field ui which is a mapping between the reference (canonical) configuration, Xi and the deformed
configuration, xi, such that xi = Xi + ui with i = 1, 2, 3 representing x, y, z axes. We model the
displacement field using cubic B-spline interpolation based on the work by Rueckert et al. [15]:

u(xi, t) =
∑3

l=0

∑3

m=0

∑3

n=0
Bl(x̃1)Bm(x̃2)Bn(x̃3)w(t)i1+l,i2+m,i3+n

where Bi(x) is fixed cubic B-spline function, i1, i2, i3 are indices of the relevant grid points,
x̃1, x̃2, x̃3 are modulo-subtracted coordinates, and w(t)i1,i2,i3 is a trainable weight of the corre-
sponding spline control point. We modified the standard B-spline field to obtain a time-dependent
deformation field u(xi, t) by extracting the weights from an MLP Ω(t) → w(t)i1,i2,i3 . Enabling
continuous parametrization of time has practical implications; for instance, it relaxes the requirements
for temporal synchronization of multiple x-ray sources and detectors. While optimization of the
deformation field is done jointly on all available timesteps, it was found desirable to prioritize early
deformation timesteps during early training steps. Furthermore, the B-spline grid is gradually refined
during training.

4 Results

Data efficiency of neural rendering We first establish that NeRFs are an efficient representation
for X-ray data using simulated projections of a lattice (Fig. 2a). Cross-sectional slices and normal-
ized correlation metric in Table 1 reveal that when relatively few projections are available, NeRF
reconstruction significantly outperforms traditional X-CT method SIRT.

# proj 3 9 16

NeRF (ours) 0.40 0.82 0.91
SIRT 0.29 0.48 0.61

Table 1: Normalized correlation metric for reconstruction of simulated lattice projections.
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Figure 3: Real-world experiments compressing lattices with a plane of defects (a,b) and randomized
microstructure (c,d). a) X-ray projections with arrow indicating localized deformation. b) NeRF and
X-CT reconstructions at t = 0.6. c) X-ray projection of randomized lattice. d) NeRF reconstruction
at t = 0.6. Surface deviations compared to withheld X-CT data shown as inset.

Verification with simulated data First we verified the optimization of the deformation field with
simulated data where the deformation field was known. In Fig. 2b we show simulated projections at
t = 0 and t = 1. The fitted displacement u3 matched the ground truth closely not only at t = {0, 1}
where high-fidelity volumetric data was available, but also at intermediate timesteps where only 2
projections were available (Fig. 2c). Ablation of the optimization method revealed that the hybrid
method with high-fidelity X-CT data at t ∈ {0, 1} and gradual refining of the B-spline grid are
important for the reliable convergence of the deformation to the ground truth.

Reconstruction of deformation experiments We applied the framework to two real-world defor-
mation experiments: Kelvin lattice with a plane of defects (Fig. 3a,b) and a lattice with randomized
microstructure (Fig. 3c,d); both undergoing compression. Due to the plane of defects in the first
lattice, deformation is localized to a thin band (Fig. 3a). In Fig. 3b we compare the reconstructed
NeRF with withheld X-CT data at an intermediate timestep t = 0.6. Small deviations are perceptible
in the reconstructed surface but the overall match is excellent. The second lattice with randomized
microstructure is chosen to probe the capacity of the framework to discriminate between density
along occluded ray paths (cf. the lack of periodicity between Fig. 3a and c). NeRF reconstruction at
intermediate timestep t = 0.6 is shown in Fig. 3d. A small cube from the centre of the specimen is
isolated and shown as a zoomed inset. The color map corresponds to the surface deviations between
the NeRF reconstruction and withheld high-fidelity X-CT. Considering the scale bar and that the
resolution of the X-CT is 76 µm, the match between the two reconstructions is remarkable.

5 Limitations and conclusions

We adapted neural rendering techniques to the X-ray modality and introduced a two-component
method with NeRF canonical model and cubic spline deformation field with continuous time
parametrization. We make use of the high-fidelity reconstruction at the beginning and end of
the experiment to train the deformation field using only two projections at intermediate stages of
deformation. The framework is demonstrated with one simulated and two experimental datasets.

The two-component framework based on the canonical model and deformation field is limited to
capturing topology-preserving deformations. While it is not a problem for many experimental
systems, a more expressive framework should be used if damage and fracture are present in the
deformation.
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Broader impact statement

The presented framework has the potential to achieve a paradigm shift in dynamic in-situ experiments
visualized by X-ray. Up until now, it was only possible to study materials in 3d under quasi-static
conditions using interrupted in-situ X-ray tomography in which X-CT reconstruction with thousands
of projections was acquired at every deformation step. Here we develop a framework in which few
(two) projections at intermediate stages of deformation are sufficient to obtain a 3d reconstruction. For
the first time, it will become possible to develop experiments where high-speed dynamic behaviour
of materials is studied in 3d using simultaneous acquisition from few detectors.

References

[1] Simone Carmignato, Wim Dewulf, and Richard Leach, editors. Industrial X-Ray Computed Tomography.
Springer International Publishing, 2018. ISBN 9783319595719. doi: 10.1007/978-3-319-59573-3. URL
http://dx.doi.org/10.1007/978-3-319-59573-3.

[2] Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-Taylor, Sarath Bethapudi, Hubert PH Shum, and
Chris G Willcocks. Mednerf: Medical neural radiance fields for reconstructing 3d-aware ct-projections
from a single x-ray. In 2022 44th annual international conference of the IEEE engineering in medicine &
Biology society (EMBC), pages 3843–3848. IEEE, 2022.

[3] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance flow for 4d
view synthesis and video processing. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14304–14314. IEEE Computer Society, 2021.

[4] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo Kanazawa.
K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12479–12488, 2023.

[5] Xiang Guo, Guanying Chen, Yuchao Dai, Xiaoqing Ye, Jiadai Sun, Xiao Tan, and Errui Ding. Neural
deformable voxel grid for fast optimization of dynamic view synthesis. In Proceedings of the Asian
Conference on Computer Vision, pages 3757–3775, 2022.

[6] Clément Jailin, Ante Buljac, Amine Bouterf, François Hild, and Stéphane Roux. Fast four-dimensional
tensile test monitored via x-ray computed tomography: Elastoplastic identification from radiographs. The
Journal of Strain Analysis for Engineering Design, 54(1):44–53, 2019.

[7] Hyojin Kim, Rushil Anirudh, K Aditya Mohan, and Kyle Champley. Extreme few-view ct reconstruction
using deep inference. arXiv preprint arXiv:1910.05375, 2019.

[8] Hugo Leclerc, Stéphane Roux, and François Hild. Projection savings in ct-based digital volume correlation.
Experimental Mechanics, 55(1):275–287, 2015.

[9] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6498–6508, 2021.

[10] Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao Zhang, Jussi Keppo, Ying Shan,
Xiaohu Qie, and Mike Zheng Shou. Devrf: Fast deformable voxel radiance fields for dynamic scenes.
Advances in Neural Information Processing Systems, 35:36762–36775, 2022.

[11] Marko Mihajlovic, Sergey Prokudin, Marc Pollefeys, and Siyu Tang. Resfields: Residual neural fields for
spatiotemporal signals. arXiv preprint arXiv:2309.03160, 2023.

[12] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and
Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5865–5874, 2021.

[13] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for topologi-
cally varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021.

[14] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance
fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10318–10327, 2021.

5

http://dx.doi.org/10.1007/978-3-319-59573-3


[15] Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, and David J Hawkes.
Nonrigid registration using free-form deformations: application to breast mr images. IEEE transactions on
medical imaging, 18(8):712–721, 1999.

[16] Angkur Jyoti Dipanka Shaikeea, Huachen Cui, Mark O’Masta, Xiaoyu Rayne Zheng, and Vikram Sudhir
Deshpande. The toughness of mechanical metamaterials. Nature materials, 21(3):297–304, 2022.

[17] Mengcheng Sun, Yu Zhu, Hangyu Li, Jiongyao Ye, and Nan Li. Acnerf: enhancement of neural radiance
field by alignment and correction of pose to reconstruct new views from a single x-ray. Physics in Medicine
& Biology, 69(4):045016, 2024.

[18] Thibault Taillandier-Thomas, Clément Jailin, Stéphane Roux, and François Hild. Measurement of 3d
displacement fields from few tomographic projections. In Optics, photonics and digital technologies for
imaging applications IV, volume 9896, pages 99–110. SPIE, 2016.

[19] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander Kristoffersen,
Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A modular framework for neural radiance
field development. In ACM SIGGRAPH 2023 Conference Proceedings, pages 1–12, 2023.

[20] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and Christian
Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene
from monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 12959–12970, 2021.

[21] Zifan Wang, Shuvrangsu Das, Akshay Joshi, Angkur JD Shaikeea, and Vikram S Deshpande. 3d observa-
tions provide striking findings in rubber elasticity. Proceedings of the National Academy of Sciences, 121
(24):e2404205121, 2024.

[22] Philip J. Withers, Charles Bouman, Simone Carmignato, Veerle Cnudde, David Grimaldi, Charlotte K.
Hagen, Eric Maire, Marena Manley, Anton Du Plessis, and Stuart R. Stock. X-ray computed tomography.
Nature Reviews Methods Primers, 1(1), 2 2021. ISSN 2662-8449. doi: 10.1038/s43586-021-00015-4.
URL http://dx.doi.org/10.1038/s43586-021-00015-4.

[23] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields for
free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9421–9431, 2021.

[24] Yanjie Zheng and Kelsey B Hatzell. Ultrasparse view x-ray computed tomography for 4d imaging. ACS
Applied Materials & Interfaces, 15(29):35024–35033, 2023.

6

http://dx.doi.org/10.1038/s43586-021-00015-4

	Introduction
	Background and related work
	Methods
	Results
	Limitations and conclusions

