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Abstract

The anticipated tenfold increase in the number of strong gravitational lenses from
upcoming wide-field imaging surveys drives the need for efficient automated detec-
tion methods. We assess the performance of three domain adaptation techniques
– Adversarial Discriminative Domain Adaptation (ADDA), Wasserstein Distance
Guided Representation Learning (WDGRL), and Supervised Domain Adaptation
(SDA) – in enhancing lens-finding algorithms trained on simulated data (or real
data) when applied to real observations from the Hyper Suprime-Cam Subaru
Strategic Program. We combine domain adaptation techniques with classifier based
on Equivariant Neural Network and find that: 1) the combination of ENNs and
WDGRL domain adaptation method has a high potential of reducing the number
of false positives; 2) the combination of ENNs and SDA improves the ability of the
model to distinguish between the lenses and common false positives such as spiral
galaxies.

1 Introduction

Strong galaxy-galaxy gravitational lensing, the distortion of light from a distant galaxy in the
gravitational field of another massive galaxy between that source and the observer, is a powerful tool
to study the universe. For example, sensitivity of the lensing observables to the distribution of mass in
the lens provides a way to study the dark matter profiles of individual galaxies [4, 19, 31, 36, 40, 45],
to probe the dark matter substructures on subgalactic scales [5, 8, 16, 17], and to test various dark
matter theories [2, 3, 15, 22, 23, 35, 50].

Upcoming wide-field surveys like Euclid Wide Survey [20, 32] and Legacy Survey of Space and
Time (LSST; [37]) are expected to yield an order of 105 strong lenses [14]. Given the rarity of these
systems and the vast amount of data, efficient identification requires advanced automated algorithms.
In recent years, deep learning models have become the primary tool for lens discoveries in wide-field
surveys.

Typically the lens finding problem is treated as the image classification problem, which is well-
suited for Convolutional Neural Networks (CNNs) [33]. Supervised CNN-based algorithms have
demonstrated superior performance in the gravitational lens finding challenge [38] and over the last
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years have been applied to various wide-field surveys yielding a few thousands of lens candidates
(e.g. [9, 10, 28, 34, 42, 44, 47]). To ensure that the supervised model is able to learn relevant features
and generalize well to unseen data, the training dataset typically requires a large number of labeled
samples (on the order of 103 − 104), which exceeds the number of known lenses. Therefore it is
common to use simulated lenses at the training stage (but see e.g. [24, 25] for supervised training
only with observational data). However, the differences between the real observations and simulated
images can significantly degrade the performance of the model [12, 13]. The gap between simulated
and real data could be mitigated using domain adaptation (DA) methods.

Domain adaptation is a class of methods applied in situations when the training and test datasets come
from different, but related domain, namely the source and the target domains. Based on availability
of labels in the target dataset, DA methods can be divided into three categories: unsupervised
domain adaptaion (UDA), when ground truth for the target data is unknown; semi-supervised domain
adaptation (SSDA), where labels are available for a fraction of the target data; and supervised domain
adaptation (SDA), where labels for the entire dataset are accessible.

We investigate the potential of domain adaptation techniques to enhance the performance of lens-
finding algorithms. We examine two unsupervised domain adaptation methods, Adversarial Dis-
criminative Domain Adaptation (ADDA) and Wasserstein Distance Guided Representation Learning
(WDGRL), and compare them against the supervised classifier trained on the dataset containing
simulated lenses. We also implement Supervised Domain Adaptation (SDA) method and compare it
with the supervised classifier trained solely on the observational data.

2 Dataset

Domain adaptation requires two datasets, the source and the target. We use simulated lenses in the
source dataset and real lens images in the target dataset, while non-lenses in both cases come from
observations and are drawn from the sample of galaxies with magnitude brighter than 26 mag in the
Hyper Suprime-Cam Subary Strategic Program (HSC-SSP) PDR2 Wide field [1].

Simulated lenses were created with lenstronomy [6, 7]. For the deflectors, we used preferentially
red galaxies from HSC PDR2 Wide field that have spectroscopic redshifts and velocity dispersion
measurements in the Sloan Digital Sky Survey (SDSS; [30]). As a background sources we used
galaxies from Hubble eXtra Deep Field [26] with redshifts from Inami et al. [27]. The mass profile of
the lens was approximated with a singular isothermal sphere (SIS) profile, set by velocity dispersion

of the deflector: ρ(r) =
σ2
V

2πGr2
.

To construct the sample of real lenses, we compiled a list of known lens systems and lens candidates
that were discovered in previous campaigns through various methods, including both machine learning
and traditional approaches, including sources from the Master Lens Database1 (version July 2021),
SuGOHI Candidate List2, and other published catalogs [9, 10, 18, 21, 24, 25, 28, 34, 41, 42, 44, 46,
47]. We crossmatched the full catalog with HSC PDR2 Wide layer and extracted cutouts in the g, r,
and i bands. We performed a visual inspection of extracted images and excluded group-scale lenses
or objects with barely visible or unclear lensed features in HSC, which is possible when the lens was
discovered in a survey with higher resolution or depth. The final sample of the real lenses included
2254 objects. We left out 200 randomly selected lenses for the test set and used the rest in the domain
adaptation.

3 Methods

We implemented two unsupervised domain adaptation methods: Adversarial Discriminative Domain
Adaptation (ADDA, [49]) and Wasserstein Distance Guided Representation Learning (WDGRL,
[43]), and Supervised Domain Adaptation (SDA, [39]).

The ADDA method aims to minimize the distance between source and target representations, Ms(Xs)
and Mt(Xt), respectively, where Ms and Mt are source and target encoders. This is achieved through
an adversarial training of the target encoder with respect to the discriminator. While the discriminator

1https://test.masterlens.org/index.php
2https://www-utap.phys.s.u-tokyo.ac.jp/~oguri/sugohi/
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tries to distinguish between representations coming from different domains, the encoder learns to
fool the discriminator and map target representations closer to the source ones. Once the distance
between Ms(Xs) and Mt(Xt) is sufficiently small, then a classifier, trained on a source dataset in a
supervised manner, can be applied to the target dataset.

The WDGRL method [43] adapts Wasserstein Generative Adversarial Networks (WGAN) concepts
to domain adaptation. It uses Wasserstein distance to measure similarity between probability distribu-
tions, providing stable gradients even for distant distributions. The method iteratively trains three
components: a domain critic D, which approximates Wasserstein distance between representations
of source and target images; a feature extractor M , which maps input images to a lower-dimensional
embedding space; and a classifier C, that is trained on the source dataset.

In the SDA method, the labels for the target dataset are available, allowing for contrastive se-
mantic alignment to minimize the distance between representations while considering their class.
The goal is to map same-class samples from different domains close together while keeping
different-class samples well separated. The method employs semantic alignment loss LSA =∑N

a=1 d(M(Xs
a),M(Xt

a)), and separation loss LS =
∑

a,b|a̸=b k(M(Xs
a),M(Xt

a)),, where d and
k are pairwise distance and similarity metrics, respectively. As in other methods, the classifier is
trained only on the source dataset.

We chose to base our encoder on the Equivariant Neural Network (ENN). ENNs are designed to
preserve inherent symmetries in data through their architecture, making them particularly useful
for gravitational lenses that often display rotational and reflectional symmetries. This approach
leads to more efficient learning, better generalization, and reduced need for data augmentation. We
implemented an ENN using the e2cnn package [11], incorporating the dihedral group D4, which
includes identity transformation, rotations by by ±π/2 and π, and horizontal/vertical reflections. Our
model consists of six equivariant convolutional blocks, each containing a convolutional layer, batch
normalization, and ReLU activation, with the final layer outputting a 256-dimensional representation.
For the classification task, the encoder is followed by a simple network, consisting of two fully
connected layers outputting binary classification.

4 Results

We examine the applicability of domain adaptation between mock lenses and real lens observations
from HSC for the purposes of lens identification. For training we use 27,000 images per class in the
source dataset, and 1,754 images per class in the target dataset. For validation, we use 3,000 images
per class in the source dataset and 300 images per class in the target dataset. The size of the sample
in the target domain is limited by the number of known lens candidates. We trained the base classifier
for 100 epochs with a patience of 5 epochs, so the training stops if the validation loss of the model
does not improve for 5 consecutive epochs. We use the Adam optimizer [29] to minimize losses and
1-cycle scheduler to adjust the learning rate. Learning rate was set to 1× 10−5 and weight decay to
1× 10−6.

We employ the Receiver Operating Characteristic (ROC) curve and the area under this curve (AUROC)
as our primary evaluation metrics. Additionally, we utilize TPR0.01 – the true positive rate at a
false positive rate (FPR) of 0.01. This is particularly relevant for lens finding, where achieving
low contamination while maintaining high identification rates is crucial. In typical automated lens
searches, human experts validate positive examples as the final stage, so it is essential to minimize
false positives while maintaining a high sensitivity.

We start by training an ENN classifier on the source dataset that contains simulated lenses. While
this classifier achieves an AUROC of ∼ 0.995, when evaluated naively (without domain adaptation)
on the test dataset containing 200 real lenses and 20,000 non-lenses, its AUROC drops to 0.921.
Application of domain adaptation results in improvement in AUROC: 0.942 for ADDA and 0.940
for WDGRL, shown in Fig. 1 (left). At the threshold, providing a FPR of 0.01, model adapted with
WDGRL is able to recover 1.15 times more lenses than ADDA, and 1.49 times more lenses than the
naive approach, which is summarized in Table 1

As a benchmark for the supervised DA, we trained a supervised classifier on the unbalanced dataset
containing 1,754 real lenses and 28,754 real non-lensed galaxies. We also added 1,754 spiral galaxies
drawn from a subsample of galaxies with redshift > 0.4 from a catalog of Tadaki et al.. Spiral
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Figure 1: Left: Application of unsupervised domain adaptation between simulated and real lenses.
Right: Application of supervised domain adaptation to a dataset containing spiral galaxies in addition
to lenses and regular non-lensed galaxies. For the supervised domain adaptation (SDA), target
datasets with varying number of spiral galaxies have been used, blue curve represents a setting where
all spiral galaxies are added to the source dataset.

Table 1: Results for unsupervised domain adaptation algorithms

Method AUROC TPR0.01 F10.01
No DA 0.921 0.354 0.303
ADDA 0.942 0.462 0.377
WDGRL 0.940 0.528 0.416

galaxies (along with ring galaxies and merging galaxies), are among the most common contaminants
in lens searches because their spiral arms resemble the arc and ring-like features of the gravitational
lenses.

We assess whether supervised domain adaptation can help distinguish spiral galaxies from lenses and
test how the model’s performance scales with the number of added spiral galaxies. To evaluate the
models, we constructed a modified test dataset that includes 6,000 spiral galaxies, 200 lenses, and
20,000 non-lenses.

The results of the evaluation on the modified test dataset are shown in Fig. 1. The SDA model
with all spiral galaxies included in the source dataset (blue curve) has the lowest performance. The
other solid lines represent SDA models that do not have spirals in the source dataset but instead
include an increasing number of spirals in the target dataset. The AUROC score improves as a larger
number of spirals are added to the target dataset, suggesting that it is critical for the model to "see" a
representative dataset during the adaptation stage. However, after approximately 500 added spirals,
the improvement becomes negligible, and we plan to examine this in more detail in future. The
black dashed line shows the ROC curve for the model without domain adaptation, trained on the
observational unbalanced dataset. Despite the relatively small number of positive samples, it has only
marginally lower performance than the models with supervised domain adaptation. In addition to
examining the recall at a false positive rate of 0.01, we compared the false positive rate for spiral
galaxies only at a true positive rate of 0.8. Overall, the number of misclassified spiral contaminants is
low for the best-performing models. However, the top models with supervised domain adaptation
outperform the model without domain adaptation and demonstrate three times smaller number of
misclassified spiral galaxies, even though they had seen a lower number of spirals in the training
dataset. The summary of results is listed in Table 2.

5 Discussion & Conclusion

In this work, we show that domain adaptation can enhance the performance and reliability of CNN-
based gravitational lens detection algorithms, addressing the limited sample of known lenses and
the shift between simulated training data and real observations. We used simulated mock lenses as
positive examples in the source dataset and observations from HSC-SSP PDR2 Wide layer in the
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Table 2: Results for supervised domain adaptation algorithm trained on a dataset with spiral galaxies.

NSp in tgt AUROC TPR0.01 FPRSp

No DA 0.988 0.882 0.009
1754 (in src) 0.968 0.549 0.134
17 0.971 0.621 0.113
88 0.987 0.851 0.022
175 0.984 0.831 0.028
526 0.989 0.892 0.004
877 0.985 0.903 0.004
1754 0.994 0.918 0.003

target dataset. For unsupervised domain adaptation, we implemented ADDA and WDGRL methods,
with WDGRL showing the largest improvement in ROC score compared to naive inference. For
supervised domain adaptation we also tested the model’s ability to distinguish between lenses and
spiral galaxies, finding that an algorithm adapted to the target dataset with spirals outperforms the
naive classifier trained on the source dataset with spiral galaxies. In lens searches, algorithms are
typically applied to large datasets (106-107 objects), with high-scoring candidates visually inspected
by human experts. Our experiment showed that the combination of ENN-based algorithm and domain
adaptation methods is particularly effective at low false positive rates, which is crucial for reducing
the number of false positives in future surveys. In future, we plan to include other common types of
contaminants (e.g. ring galaxies or interacting galaxies) to the dataset in order to improve the purity
of the identified lenses.
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