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Abstract

Trajectory Ensemble Langevin Dynamics (TELD) enables sampling of molecular
dynamics at the trajectory level by applying Langevin dynamics to entire molecular
trajectories rather than individual conformations. TELD formulates a trajectory
probability distribution and derives a score function from it, incorporating energetic
and dynamic information, which enables gradient-based sampling in the trajectory
phase space. By shifting the perspective from conventional conformation-based
MD to trajectory-level MD, TELD can impose diverse constraints on entire trajecto-
ries, such as fixing the start and end points in two distinct states, thereby sampling
only the transition path ensemble. Our implementation leverages automatic dif-
ferentiation for computing the high-order derivatives needed for the trajectory
probability score calculation, making it compatible with differentiable classical
force fields and GNN-based neural network potentials. We validate TELD’s per-
formance on a molecular system, AIB9, demonstrating its ability to accurately
reproduce equilibrium properties, dynamics, and rare event statistics.

1 Introduction

Molecular dynamics (MD) simulations have become an indispensable tool in computational chem-
istry and biology, offering atomic-level insights into complex molecular processes [1]. However,
conventional MD techniques often struggle to sample rare events and long-time-scale phenomena
efficiently, limiting our ability to study critical biological processes such as protein folding, ligand
binding, and conformational changes.

To address these limitations, various enhanced sampling methods have been developed, including
transition path sampling (TPS) [2], metadynamics [3], and umbrella sampling [4], each offering
different approaches to overcome energy barriers. In particular, some research has explored a
perspective shift from conventional step-by-step MD to sampling in the trajectory space for TPS,
where the trajectory is treated as a string or chain of conformations [5, 6, 7, 8], which allows the
targeted generation of transition paths and the sampling of the transition path ensemble. Despite
recent advancements [9, 10], challenges remain in efficiently sampling high-dimensional molecular
systems with these methods, especially for those sampling the trajectory space.
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Recent developments in machine learning and computational methods opened new avenues for
improving the sampling speed and accuracy of MD simulations. Graph neural network (GNN)-based
potentials have demonstrated remarkable precision in representing complex energy landscapes and
learning coarse-grained representations of systems and their dynamics [11, 12, 13]. Concurrently,
the development of differentiable classical force fields [14, 15] has enabled the seamless integration
of physics-based models with machine learning frameworks. These advances allow for flexible and
efficient computation of high-order or non-standard gradients. This capability has paved the way for
more sophisticated enhanced sampling schemes that potentially address the limitations of traditional
enhanced sampling methods.

TELD applies Langevin dynamics or optimization to entire molecular trajectories, leveraging auto-
matic differentiation with differentiable force fields, in addition to theoretical advancements inspired
by geometric deep learning, to overcome sampling limitations of earlier similar approaches. This
enables efficient gradient-based sampling in high-dimensional trajectory spaces, allowing exploration
of rare events. We detail TELD’s foundations and demonstrate its effectiveness on a molecular
system.

1.1 Trajectory Probability

The probability p(X,V ) of a trajectory of length L in phase space, where X = {x0, ..., xl, ..., xL}
and V = {v0, ..., vl, ..., vL} represent configurations and velocities, respectively, can be decomposed
into the probabilities of the initial state and the transition probabilities of going from one configuration
to the next [5, 16, 17]:

p(X,V ) = p(x0) · p(v0)
L−1∏
l

p(xl+1, vl+1|xl, vl) (1)

For physical systems in equilibrium p(x0) and p(v0) are given by the Boltzmann and Maxwell-
Boltzmann distributions, respectively. The transition probability p(xl+1, vl+1|xl, vl) can be calculated
using the Langevin propagator, discretized using the Euler-Maruyama method:

xl+1 = xl +∆tvl+1 (2)

vl+1 = αvl +
(1− α)

M
F (xl) +

√
(1− α2)

Mβ
dW (3)

where ∆t is the time step, α is the friction coefficient, F (xl) is the force at xl, M is the particle
mass, β is the inverse temperature, and dW is a Wiener process. The propagator can be recast into a
probabilistic form, xl+1 ∼ N (µl+1, σ

2
l+1) with:

µl+1 = xl +∆t(αvl +
(1− α)

M
F (xl)) (4)

σl+1 = ∆t

√
(1− α2)

Mβ
(5)

The overall path probability is the product of these transition probabilities for each time step and each
particle in the system in parallel. We dropped the particle subscript for clarity. Furthermore, since
velocities can be recalculated from the change in position over the time step ∆t we only need the
initial velocity and the positions to calculate p(X,V ).

1.2 Sampling with Score Langevin Dynamics

Given the probability of the trajectory p(X,V ), we define the score function as the logarithm of the
probability gradient with respect to the trajectory:

s(X,V ) = ∇X,V log p(X,V ) (6)

(X,V )k+1 = (X,V )k + ϵs((X,V )k) +
√
2ϵdW (7)

where (X,V )k represents the full phase space trajectory at iteration k, ϵ is the step size, and dW is a
Wiener process in R(L+1)×3N . Using this sampling scheme, it is possible to sample from p(X,V ) in
the limit of k → ∞ and ϵ→ 0.
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1.2.1 Physical Interpretation of the Trajectory Score Function

Explicitly expressing the trajectory probability’s score function uncovers the forces driving its
evolution. The score function can be decomposed into three main components:

∇X,V log p(X,V ) = ∇X,V log p(x0) +∇X,V log p(v0) +

L−1∑
l=0

∇X,V log p(xl+1, vl+1|xl, vl)

(8)

Initial configuration and velocity terms can be expanded as:

∇X,V log p(x0) = βF (x0)êx0
(9)

∇X,V log p(v0) = −βMv0êv0 (10)

Where êx0
and êv0 correspond to the first unit vectors of the components of the trajectory vector X

and V. These terms represent forces that constrain the initial position and velocity to evolve according
to the Boltzmann and Maxwell-Boltzmann distributions, respectively. The transition probability term
can be expanded as follows:

L−1∑
l=0

∇X,V log p(xl+1, vl+1|xl, vl) =
dl→l+1

σ2
(−α∆têv0

− (1 +
∆t(1− α)

βM

dF (xl)

dxl
)êxl

+ êxl+1
)

(11)

+

L−1∑
l=0

dl→l+1

σ2
(αêxl−1

− (1 + α− ∆t(1− α)

βM

dF (xl)

dxl
)êxl

+ êxl+1
)

(12)

Here dl→l+1 is the difference vector between xl+1 and the deterministic mean of xl+1, µl+1 and
êv0 , êxl−1

, êxl
and êxl+1

are the unit vectors corresponding to the initial velocity in V and the
conformations in X at time index l − 1, l and l + 1 respectively. These interactions keep the
conformations within the Gaussian distribution described by the probabilistic formulation of the
under-damped Langevin propagator described in section 1.1.

1.2.2 Rotational Invariant Transition Probability

The probability log p(xl+1|xl, vl), for l = 0 and log p(xl+1|xl, xl−1), for l ̸= 0 are not invariant
under arbitrary rotations of its input conformations.

p(R1xl+1|R2xl, R3xl−1) ̸= p(xl+1, xl|xl−1) for R1,2,3 ∈ SO(3) (13)

This lack of rotational invariance can lead to fictitious energy barriers in the sampling landscape, as
the probability of transitions depends on the absolute orientation of the molecular system at each
point in time. This can be interpreted as the trajectory’s conformations sterically clashing with
their temporal neighbors, see equation 11, thereby drastically slowing down sampling. Previous
trajectory-level sampling methods did not encounter this, as they only studied single-particle systems.
To address this issue, we reformulate the transition probability as rotationally invariant. We achieve
this by aligning the conformations xl−1 and xl+1 with the frame xl before computing the probability:

pinv(xl+1|xl, xl−1) = p(Al(xl+1), xl,Al(xl−1)) (14)

where Al is an alignment operator that rotates a given frame to best match the frame xl found via the
Kabsch algorithm. The resulting invariant transition probability satisfies the following conditions:

pinv(R1xl+1|R2xl, R3xl−1) = pinv(xl+1|xl, xl−1) for all R1,2,3 ∈ SO(3) (15)

By formulating the transition probability, we ensure that the sampling depends only on the relative
changes after alignment. This approach results in a smoother energy landscape for trajectory sampling,
at the cost of the rotational alignment of the conformations, as conformations can now rotate freely to
each other, which one can deal with via rotational alignment in post-processing.
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2 Experiments

We evaluate Trajectory Ensemble Langevin Dynamics (TELD) on the AIB9 system, a 9-residue artifi-
cial protein comprising 129 atoms. AIB9 serves as an ideal test system due to its well-characterized
conformational landscape with two distinct metastable states, making it a benchmark for transition
sampling methods. We compare TELD to conventional MD simulations at 500K, using the AMBER
ff15ipq-m force field for protein mimetics [18] implemented in DMFF [15].

2.1 Validation of Free Energy and Dynamics

We validated TELD against classical MD simulations of the AIB9 system by examining both
conformational distributions and dynamical properties. Starting with 3200 trajectories of length L =
96, where each time step corresponds to one picosecond, from classical MD, we evolve them using
TELD for 5000 steps and analyze the resulting statistics. Figure 1 shows this comparison through
the free energy surface projected onto the central residue’s ϕ and ψ dihedral angles, along with their
autocorrelation functions. The agreement between methods confirms that TELD preserves both the
equilibrium conformational distributions and the system’s intrinsic dynamics.

(a) Free energy surface of AIB9 from TELD (left) and
classical MD (right).

(b) Auto-correlation functions for ϕ and ψ angles from
TELD and classical MD.

Figure 1: Validation of TELD against classical MD shows preservation of both equilibrium distribu-
tions (left) and dynamical properties (right) for the AIB9 system.

2.2 Transition Path Generation & Ensemble Sampling

Figure 2: Initial transition paths obtained by opti-
mizing log p(X,V ) subject to start and end state
constraints using the Adam optimizer.

TELD enables sampling of transitions through
a two-step approach that addresses a key chal-
lenge: generating the initial transition path. First,
we construct a preliminary trajectory by sam-
pling one conformation from each metastable state
and replicating each L

2 times to create the initial
and final segments. Although initially discon-
tinuous, these segments are connected by mini-
mizing − log p(X,V ) using the Adam optimizer
[19] while maintaining fixed endpoints. This op-
timization naturally discovers minimum-energy
paths connecting the segments. By computing
the probabilities of the generated transitions, we
can identify and select the most physically fea-
sible paths, as shown in Figure 2. The opti-
mized trajectory can then be evolved through
the score sampling method described in Section
1.2. As seen in figure 3, the sampled transi-
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tions show reasonable agreement with MD reference data, though some discrepancies in the
free energy profiles are observed, likely due to discretization effects from the relatively large
trajectory-level timestep (dt = 0.01 ps) and TELD stepsize. These trajectories can also
serve as input to conventional TPS methods, which typically require an initial transition path.

Table 1: Comparison of transition generation efficiency between conventional MD performed in
OpenMM and TELD on the AIB9 system. Measurements were performed on a single A6000 GPU at
500K. A transition is counted when the system moves between the defined metastable states.

Method Transitions per GPU-hour

Conventional MD 9.8
TELD 310.3

3 Conclusion

Figure 3: Comparison of transition path distri-
butions between TELD-based sampling of tran-
sitions and a long classical MD trajectory (top).
The time evolution of two selected transition
paths (bottom).

We have introduced Trajectory Ensemble
Langevin Dynamics (TELD), which advances
trajectory-level simulations through modern tools
like automatic differentiation and parallelization,
as well as theoretical advancements inspired by
geometric deep learning to aid in sampling speed.
This approach allows for diverse constraints
during sampling, with TELD successfully repro-
ducing equilibrium properties, dynamics, and
rare event statistics on a model molecule. While
TELD shows a 32-fold improvement in transition
path generation compared to MD, it has notable
limitations: trajectories remain more correlated
to their initial conditions than in traditional TPS
shooting moves, and the computational cost,
though parallelizable, is substantial due to the
high-dimensional nature of trajectory space.

Future work should focus on several key direc-
tions: (1) applying TELD to more complex molec-
ular systems such as protein folding and ligand
binding, (2) rigorously comparing its performance
with established enhanced sampling techniques
to fully realize its potential in studying biologi-
cally relevant timescales and processes, (3) explor-
ing the integration of neural network potentials to
further accelerate sampling, and (4) investigating
more sophisticated discretization schemes beyond
the current Euler-Maruyama approach, such as
BAOAB [20] which might lower discretization er-
rors as seen in figure 3. A particularly promising direction would be to represent transition pathways
through implicit neural representations trained as physics-informed neural networks (PINNs) using
TELD’s trajectory probability as a physics-informed loss function. This could enable continuous-time
representations of transitions while maintaining physical consistency.
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A Appendix

A Adaptive Step Size Calculation

The step size ϵ in equation (7) is computed adaptively to maintain a constant score-to-noise ratio
(SNR) between the score function and the Wiener noise across different regions of the trajectory
space. The computation follows these steps:

1. Calculate score function magnitude:

∥s(X,V )∥ =

√√√√ 1

3N(L+ 1)

N∑
n=1

L∑
l=0

3∑
i=1

(sn,l,i(X,V ))2 (16)

where N is the number of particles, L is the trajectory length, and sn,l,i are the components of the
score function for particle n at time step l in dimension i.

2. Calculate noise magnitude:
∥dW∥ =

√
3N(L+ 1) (17)

where dW is the Wiener process with the same dimensionality as the trajectory.

3. Compute step size to maintain target SNR:

ϵ = 2

(
SNR · ∥dW∥

∥s(X,V )∥

)2

(18)

This ensures that SNR = ϵ∥s(X,V )∥√
2ϵ∥dW∥ remains constant throughout sampling, balancing exploration

and exploitation based on local score magnitudes. The factor of 2 comes from the standard form of
the Langevin equation as shown in equation (7).

B System Parameters and State Definitions

Table 2: TELD Simulation Parameters
Parameter Value

Software DMFF (JAX-based)
Force Field AMBER ff15ipq-m
Temperature 500 K
Trajectory Time Step 1 ps
Trajectory Length Steps (L) 96
Batch Size 64
Number of Batches 50
Total Trajectories 3200
Score Noise Ratio 0.03
Integration Steps 5000
Friction Coefficient 1.0 ps−1

Nonbonded Method NoCutoff

These parameters were used to generate the equilibrium ensemble shown in Figure 1, which compares
TELD’s free energy surfaces and autocorrelation functions with classical MD. The relatively large
batch size and number of batches ensure adequate sampling of the conformational space, while the
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integration steps and noise ratio were tuned to achieve stable sampling. We use DMFF, a differentiable
implementation of the AMBER force field, which enables efficient computation of the trajectory
probability gradients needed for TELD.

Table 3: Classical MD Parameters
Parameter Value

Software OpenMM 8.1
Force Field AMBER ff15ipq-m
Total Simulation Length 2.7 ms
Integration Timestep 1 fs
Trajectory Saving Interval 1 ps
Temperature 500 K
Friction Coefficient 1.0 ps−1

Total Integration Steps 2.7×109
Constraint Method HBonds
Nonbonded Method NoCutoff
Integrator LangevinMiddle

Table 4: Metastable State Definitions
State ϕ Range (rad) ψ Range (rad)

A [-1.0 ± 0.5] [-0.5 ± 0.5]
B [1.0 ± 0.5] [0.5 ± 0.5]

C Transition Path Generation Details

Table 5: Initial Transition Path Generation Parameters
Parameter Value

Trajectory Time Step 0.01 ps
Trajectory Length Steps (L) 38
Initial Paths 124
Initial Optimization Steps 4000
Interpolation Steps 2
Secondary Optimization Steps 1500
Fixed Endpoint Weight 1.0
Central Region Weight 300.0
Weight Fraction 1/4
Learning Rate (Initial) 2×10−3

Learning Rate (Secondary) 1×10−3

These parameters were used to generate the initial transition paths shown in Figure 2. We first
optimize short trajectories connecting the two metastable states, then interpolate and refine them to
obtain smooth transitions suitable for subsequent sampling. Each conformation in the trajectory is
coupled to its potential energy through a weight parameter: a high weight (300.0) in the central region
of the trajectory, covering 1/4 of the total length (Weight Fraction), strongly biases the optimization
towards finding minimum energy paths in the transition region, while the endpoints remain more
loosely constrained with a weight of 1.0.
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