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Abstract

Symbolic regression (SR) identifies mathematical equations behind data, which
plays a crucial role in scientific discovery. Most SR methods involve coefficient
estimation, a process of adjusting the coefficient values in the estimated equation
to fit the data. However, existing coefficient estimation methods are prone to
fail when estimating exponential and non-exponential coefficients simultaneously.
To address this challenge, we propose an algorithm that separately estimates
exponential and non-exponential coefficients3. Our method finds the ground truth
coefficient values in a larger number of problems than existing methods, and
the performance can be further improved given an order-level initial estimate
of the coefficients. We also analyze the time complexity of our algorithm both
theoretically and experimentally.

1 Introduction

Symbolic regression (SR) is the task of estimating the underlying mathematical equation behind
observed data [9, 13]. Specifically, given n data points {(xi, yi)}ni=1, the goal is to find a function
f : Rd → R such that yi = f(xi) for all i. Here, the ground truth f is assumed to be a simple
equation composed of predefined mathematical operations, such as +(add), ×(mul), log, sin, exp,
etc. Consequently, the estimated function f̂ in SR is generally more interpretable than the complex
functions used in typical machine learning, such as neural networks. This high interpretability makes
SR particularly useful in various scientific fields, including physics [5, 17, 19], materials science
[1, 20, 21], and astrophysics [12], where understanding the laws behind the data is crucial.

To date, numerous SR methods have been proposed, including genetic programming [6–8], deep
learning [2, 4, 10, 16], and others [11, 18]. They typically include the following procedure:

1. Skeleton Estimation: Estimate a “skeleton” fskl of f . We call the estimated skeleton f̂skl.

2. Coefficient Estimation: Optimize coefficients in f̂skl to better fit {(xi, yi)}ni=1, resulting in f̂ .

Here, fskl is a formula derived by replacing the numerical coefficients in f with special variables c.
We divide c into cexp and cnon, representing exponential and non-exponential coefficients, respectively.
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For example, fskl(x; c) = c1 × xc0
0 + log(x1 + c2), c = [2, π,−3], cexp = [2], and cnon = [π,−3] if

f(x) = π× x2
0 + log(x1 − 3). In a slight abuse of notation, we will use c, cexp, and cnon for both the

coefficient variables and their assigned numerical values. The above two steps alleviate the difficulty
of SR by decomposing f into its structure and coefficient values, and estimating them individually.

While both steps are essential for SR, previous studies have mainly focused on improving skeleton
estimation. This paper demonstrates that existing coefficient estimation methods [3, 14] do not
work well when f̂skl has exponential coefficients, which is common in scientific laws, such as the
exponent −2 in F = GmM

r2 . We then propose a new optimization method that separately estimates
exponential and non-exponential coefficients. We empirically show the superiority of our method
with experiments on the Symbolic Regression for Scientific Discovery (SRSD) dataset [15].

2 Existing coefficient estimation methods and their limitations

The coefficient estimation methods employed in existing SR approaches fall into two categories. The
first category [11, 18] assumes that f̂skl has a simple structure like polynomials. Then, the coefficients
are estimated by minimizing L(c) := 1

n

∑n
i=1(f̂skl(xi; c)− yi)

2 w.r.t. c, often analytically thanks to
the simple structure assumption. An explicit limitation of this category is that f cannot be identified
if fskl does not have an assumed simple structure, which is often the case for scientific equations.

Thus, gradient-based methods, such as the Levenberg-Marquardt (LM) algorithm [14] and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [3], are more commonly used [2, 4, 6, 7, 16].
They do not impose a simple structure assumption on f̂skl, and minimize L(c) using the information
of L′(c). While these approaches accept any form of f̂skl as long as it is differentiable, existing SR
methods assumed that f̂skl does not contain exponential coefficients. Many [4, 6, 7, 16] dealt with
problems where the ground truth f does not contain exponents, which can prevent them from being
used for scientific discovery. Biggio et al. [2] treated f with exponents, but required correct estimation
of exponents at the skeleton estimation stage, making the stage more complex and challenging. To
make SR more applicable to the identification of scientific laws, we propose an algorithm to optimize
both exponential and non-exponential coefficients at the coefficient estimation stage.

3 Proposed method: two-stage optimization

As we will see in Section 4, the LM and BFGS algorithms fail to estimate coefficients mainly because
estimating both cexp and cnon simultaneously is numerically unstable. Therefore, we propose to
estimate them separately. Specifically, our proposed method (Algorithm 1) iteratively performs the
estimation of cexp and cnon while always maintaining the top B candidate solutions (beam search).
After Lout iterations, the best coefficients that minimize L(cexp, cnon) are chosen from the candidates.

The exponential coefficients cexp are optimized by a simple brute-force method (Exponential part in
Algorithm 1). First, each current candidate value of cnon is paired with all possible patterns of cexp
from Σnexp , where Σ is a predefined set of possible exponents and nexp is a number of exponential
coefficients in f̂skl. Of all the pairs generated, the top B pairs that minimize L the most are selected.

Next, for each (copt
exp, cnon) of the top B pairs from the previous step, cnon is optimized (Non-

exponential part in Algorithm 1). This optimization is also an iteration of two steps. In each
iteration, cnon is first optimized with the LM or BFGS algorithm, resulting in copt

non. Since these algo-
rithms often yield a local optimum solution, the second step tries to jump out of the local optimum
by optimizing one dimension of copt

non. Specifically, copt
non is fixed except for one dimension j, and

yi = f̂skl(xi; c
opt
exp, c

opt
non[: j], c, c

opt
non[j :]) (1 ≤ i ≤ n) is solved w.r.t. c. Note that this is analytically

solvable in most cases. For example, yi = c1 × xc0
i,0 + log(xi,1 + c2) is solvable w.r.t. c2, i.e.,

c2 = exp(yi − c1 × xc0
i,0) − xi,1. Averaging the resulting c over all i gives copt. Intuitively, the

dimension j of copt
non is refined using the skeleton information, which is ignored in gradient-based

optimization. If the second step does not have an analytical solution w.r.t. the dimension j, the
refinement of the dimension is skipped. Finally, we update the value of the dimension where the
refined copt

non minimizes the loss function the most, and move on to the next iteration.
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Algorithm 1 Two-stage optimizer
Hyper Parameter: set of possible exponents Σ, beam size B, number of outer iteration Lout,
gradient based optimizer Ograd, number of inner iteration Lin

Input: estimated skeleton f̂skl, data {(xi, yi)}ni=1, and initial values for coefficients (cinit
exp, c

init
non)

Output: f̂

L(cexp, cnon)← 1
n

∑n
i=1(f̂skl(xi; cexp, cnon)− yi)

2 ▷ Loss to minimize.
S ← {(cinit

exp, c
init
non)} ▷ Set of current candidates.

nexp, nnon ← |cinit
exp|, |cinit

non| ▷ Number of coefficients in f̂skl.
for out-iter = 1 to Lout do

/* Exponential coefficient estimation starts */
Snon ← {cnon for (cexp, cnon) in S}
Sexp-opt ← argmin-topB(cexp,cnon)∈Σnexp×Snon

L(cexp, cnon) ▷ Set of top-B successful candidates.
/* Exponential coefficient estimation ends */
/* Non-exponential coefficient estimation starts */
Sexp-opt-non-opt ← ∅
for (copt

exp, cnon) ∈ Sexp-opt do
copt

non ← cnon
for in-iter = 1 to Lin do

copt
non ← Ograd(L, copt

non) ▷ Optimize copt
non using LM or BFGS algorithm.

Sjump ← ∅
for j = 0 to nnon − 1 do

gi(c)← f̂skl(xi; c
opt
exp, c

opt
non[: j], c, c

opt
non[j :])− yi (1 ≤ i ≤ n)

copt ← 1
n

∑n
i=1 g

−1
i (0) ▷ Analytically solvable in most cases.

Sjump.add([copt
non[: j], copt, copt

non[j :]])
end for
copt

non ← argmin cjump∈Sjump
L(copt

exp, cjump) ▷ Change only one dimension of copt
non.

end for
Sexp-opt-non-opt.add((copt

exp, c
opt
non))

end for
/* Non-exponential coefficient estimation ends */
S ← Sexp-opt-non-opt

end for

cbest
exp , c

best
non ← argmin(cexp,cnon)∈SL(cexp, cnon) ▷ Select the best among the top-B.

f̂ ← f̂skl(; c
best
exp , c

best
non )

Before moving on to the experiments, we analyze the time complexity of Algorithm 1. Since
L(c) is the mean squared error (MSE) of n samples, its calculation takes O(n) time. If we keep
the top B candidates in a priority queue, the exponential part takes O(Σnexp · B · (n + logB))
time on each outer iteration. For the non-exponential part, suppose each optimization with
the LM or BFGS takes Tgrad time. Then, the time complexity for the non-exponential part is
O(B · Lin · (Tgrad + nnon · n)) at each outer iteration. Therefore, the total time complexity is
O (Lout ·B · (Σnexp · (n+ logB) + Lin · (Tgrad + nnon · n))).

4 Experiments and discussions

In this section, we compare our proposed method with existing algorithms, and also see the effect
of hyperparameters on time complexity and performance. We selected 112 out of 120 problems
from the SRSD dataset456 [15] that have at least one numerical coefficient in f , and created fskl by

4https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy
5https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium
6https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard
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y = 3
5 ·

Q2
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c0
0 xc1

1
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c0
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Figure 1: Examples of deriving fskl from f in the SRSD dataset [15]. The coefficients and variables
in the ground truth f on the left are replaced by c and x respectively.

Table 1: The number of problems ending in global optimum/local optimum/failure and the average
execution time of different methods.

Optimization method Global optimum Local optimum Failure Average time [s]

BFGS 13 56 43 37.97
LM 30 35 47 35.78

Ours with BFGS 60 49 3 38.32
Ours with LM 64 46 2 37.98

Ours with LM (without Jump) 57 53 2 33.62
Ours with LM (estimated init) 84 28 0 36.64

replacing the coefficients in f with variables c. See Figure 1 for examples. To focus on the coefficient
estimation, we assumed a correct skeleton estimation, i.e. f̂skl = fskl. Thus, the benchmark task
was to estimate f from fskl using {(xi, yi)}ni=1, where we set n = 20. We tested the following
five different methods on the task: BFGS, LM, our method (Ograd=BFGS), our method (Ograd=LM),
and our method (Ograd=LM) without the jump step in estimating cnon. Each dimension of cinit was
sampled independently from a uniform distribution on [0, 1]. In our proposed methods, we set
Σ = [−1,±0.5,±1.5,±2,±3,±4,±5], B = 10, Lout = 2, and Lin = 10. For a fair comparison,
we roughly equalized the average execution time by restarting the BFGS and the LM 200 times
with different cinit. The optimization results were classified into three types: global optimum, local
optimum, and failure. We considered cbest to be a global optimum if the relative error between cbest

and the true value is below 10−4 in all dimensions; otherwise it was a local optimum. For the BFGS
and LM algorithms, a failure meant that none of the 200 optimizations finished successfully, while
for our methods it meant that none of the inner optimizations by Ograd ended successfully.

Table 1 (except for the last row) shows the results for the five different methods. As shown, the BFGS
and LM algorithms reach the global optimum in only 13 and 30 out of 112 problems, respectively,
indicating that they often fail even when the true skeleton fskl is known. In addition, despite being
restarted 200 times, a certain number of problems end in a failure. Although not shown in Table 1,
about 95% of the failures are due to either “invalid value encountered in scalar power” or “overflow
encountered in scalar power”, resulting from the simultaneous optimization of exponential and
non-exponential coefficients. On the other hand, our methods (rows 3 and 4) are much more likely to
find a global optimum, and the number of failures is much smaller. Comparing rows 4 and 5, it is
apparent that the jump step helps to escape from a local optimum. Finally, the LM performs better
than the BFGS both on its own and when incorporated into our proposed algorithm.

However, there are still some hard problems where our methods can only find local optimums. To
study the characteristics of such problems, we visualize the ratio of global optimum, local optimum,
and failure for problems with the same number of exponential and non-exponential coefficients
in Figure 2. It shows that our method with the LM mainly improves the possibility of finding a
global optimum in problems with few coefficients (lower left region), but it still suffers with many
coefficients (upper right region). To improve results for the upper right problems, we assume that we
have access to cinit whose order matches that of the ground truth value. In practice, such a good cinit

can be obtained, for example, using a transformer model in the skeleton estimation [4]. As shown,
access to a good cinit alleviates the difficulty of problems with many coefficients (Figure 2 right) and
leads to a higher overall performance (last row in Table 1). In Figure 2, the LM could not find the
global optimum on both problems, while our method did on the upper problem. Our method reached
the global optimum in the lower problem only when the good initial estimate of cinit was given.

Next, we analyze how the hyperparameters B,Lout, and n affect the execution time and the success
rate. Here, the success rate is defined as the number of problems ending in the global optimum
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Figure 2: The ratio of the final results, grouped by the number of exponential and non-exponential
coefficients. Each circle consists of problems with the same number of coefficients of both types.
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Figure 3: The execution time and success rate under different hyperparameters. The baseline is
(B,Lout, n) = (10, 2, 20), and we change one of these parameters in each plot.

over the total number of problems. As a remainder, the theoretical time complexity of Algorithm 1
is O (Lout ·B · (Σnexp · (n+ logB) + Lin · (Tgrad + nnon · n))). Figure 3 shows that the practical
exection time is generally linear in B,Lout, and n. It is linear in B and n, probably because
n ≫ logB and Tgrad is linear in n in practice. The linearity of Tgrad comes from the fact that
computing L′(c) takes O(n) time. If you take a closer look at the middle plot, you will notice that
estimating cexp takes very little time when Lout = 1. This can be explained by the fact that the brute-
force estimation is done over Σnexp candidates on the first iteration, while Σnexp ·B candidates after
the second iteration. Overall, the exponential part tends to take longer than the non-exponential part,
indicating the importance of future studies on more sophisticated exponential estimation methods. In
terms of the success rate, the improvement saturates at (B,Lout, n) = (10, 2, 20) in all plots. Thus,
to achieve an even higher success rate, it is necessary to improve the algorithm or the estimation of
cinit instead of running the current one for a longer time.

5 Conclusions

We have proposed a coefficient estimation algorithm that optimizes exponential and non-exponential
coefficients separately. Our method is much more likely to find the ground truth coefficient values than
previous methods, performs even better given an order-level initial estimate of the coefficients, and can
be combined with any skeleton estimation method. We have also analyzed how the hyperparameters
affect the time complexity and the success rate of the algorithm. In future work, we will replace the
brute-force algorithm for estimating exponential coefficients with a more advanced one. We will also
combine our method with popular skeleton estimation methods to test performance improvements.
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