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Abstract
High-resolution lensing images are essential in astrophysics for identifying and
studying a range of physical phenomena, in particular the nature of dark matter.
Deep learning approaches that learn super-resolution often require large amounts
of training data. When the forward model (or degradation process) for super-
resolution is known, model-based architectures such as loop unrolling have been
shown to provide superior results and are more data-efficient than direct recon-
struction methods. The classic loop unrolling requires knowing the forward model
precisely, while a recent work addresses errors in forward model by iterative adapta-
tion along reconstruction, achieving high reconstruction quality across various tasks
but is designed for supervised learning only. High-resolution gravitational lensing
images are expensive to obtain, but numerous low-resolution images are available.
We propose to use an A-adaptive loop unrolling architecture for high-resolution
reconstruction, and incorporate the untrained adaptively estimated forward model
network as part of the semi-supervised training loss. Experimental results demon-
strate significant performance gains when leveraging the estimated forward model
across different amounts of paired data.

1 Introduction
A gravitational lens occurs when a massive object, such as a galaxy cluster, lies between a distant
source (like a galaxy) and an observer. Studying gravitational lenses provides insights into the
distribution and nature of dark matter, the properties of distant galaxies, the validity of general
relativity, and the structure and evolution of the cosmos [1, 2, 3, 4, 5, 6]. In particular, we aim
to address the super-resolution (SR) problem in gravitational lensing. High-resolution images are
essential for studying the intricate structures of distant galaxies, which enable detailed analysis
and precise measurements that are not possible with low-resolution data – in particular, extracting
properties of dark matter from substructure [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Machine learning
has improved SR reconstruction but relies on large paired datasets. Due to limited high-resolution
gravitational lens images from advanced equipment, supervised training no longer achieves optimal
performance. However, with abundant low-resolution images, the goal is to enhance SR by leveraging
these alongside the limited high-resolution data.
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In this project, we consider SR from the inverse problem perspective, which aims to recover the
desired signal (high-resolution image x) from noisy measurements (low-resolution image y). The
signals x ∈ Rn and y ∈ Rm are related by the forward model A ∈ Rm×n, expressed as,

y = Ax+ ϵ, (1)

where ϵ is unknown observation noises. SR is an ill-posed problem because the reconstruction result
is not unique, making it inherently challenging to solve.

A line of research aims to learn a direct inverse mapping from y to x, such as variations of CNN
[18, 19], generative adversarial networks [20] and diffusion model [21, 22]. When A is known,
[23, 24, 25] incorporate A in self-supervised loss, i.e., ||y − Ax̂||22 where x̂ is the estimated
reconstruction. On the other hand, when A contains error or completely unknown, additional
regularization is added to the mean-squared error (MSE) in the supervised learning loss ||x− x̂||22.
Hand-crafted regularizations, such as perceptual loss [26], total variation regularization [26], and
contrastive loss [27], are typical choices independent of A. While those hand-crafted regularizers can
improve performance, they are task-specific and may not always yield the best possible results. In
IPs, [28] learns the forward model together with a direct inverse mapping, and uses the approximated
forward model fρ as part of the training loss, ||y− fρ(x̂)||22. In the experiments, we demonstrate that
the proposed method adaptively estimates the forward model and outperforms this baseline.

Model-based architecture such as loop unrolling (LU) [29, 30, 31, 32] is considered to be more
interpretable [31], more data efficient [31, 33], and achieves better reconstruction quality than other
comparable black box data-driven approaches. LU addresses the suboptimal regularizer by iteratively
refining the reconstruction, utilizing A at each iteration. Classical LU relies on accurate forward
models. However, in gravitational lens SR problems, the forward model encodes the relationship
between observations from different types of observatory equipment, making it challenging to
formulate this exact mapping mathematically. Recent work [34] addresses forward model mismatch
in LU using an untrained neural network that adaptively estimate the true forward model for each
data instance during both training and inference, achieving performance comparable to LU with a
known A. In this work, we extend the adaptive LU to semi-supervised learning that incorporates the
estimated forward model into the loss function. This paper is the first to address the semi-supervised
SR problem using loop unrolling architecture with inaccurate forward models. We demonstrate
that our method is more data-efficient than direct SR networks and its supervised loop unrolling
counterpart, delivering superior reconstructions across varying levels of data availability.

2 Methodology
2.1 Supervised Loop Unrolling Methods
Loop unrolling (LU) method [29, 31, 35, 36, 37] is a class of model-based architectures in solving
inverse problems in (1), which is inspired by classical optimization problems in solving for x̂,

x̂ = argmin
x

1

2
||y −Ax||22 + γr(x), (2)

where r is an arbitrary regularization function and γ > 0 is the regularization coefficient. When
the regularizer r is not differentiable, proximal gradient descent can be used to approximate x̂, for
k = 1, 2, 3, ... with step size η,

xk+1 = prox(xk − ηA⊤(Axk − y)), (3)

where the proximal operator replaced by a neural network. With a fixed number of iterations K,
the output xK is compared to the ground-truth x, and the weights in prox network are updated in
supervised manner. LU is data efficient and achieves high-quality reconstructions but requires an
accurate A to ensure correct and efficient learning.

2.2 A-adaptive loop unrolling method
A recent work [34] proposes a variation of the loop unrolling architecture that can adaptively update
the forward model and the reconstruction alternatively. In this approach, an untrained neural network
parameterized by θ, netAθ : x 7→ y, is used to estimate the true forward model. The parameters θ
are iteratively updated during the reconstruction of each data instance.

In SR problems, we assume netAθ is used to approximate the true forward model, thus ideally,
y = netAθ(x) + ϵ. Modified from the general A-adaptive algorithms in [34], A-adaptive LU for
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Figure 1: Visualization of super-resolution results using methods that can be trained without A.

super-resolution aims to minimize the following objective function,

min
x,θ

1

2
∥y − netAθ(x)∥22 + γr(x), (4)

where r is a regularization function and γ is a regularization coefficient that is set before training.
Then, introduce an auxiliary variable z, with initializations x0, z0 and θ0, the optimal solutions can
be obtained by updating each variable with step-size η for iterations k = 1, 2, 3, ...

zk+1 = argmin
z

1

2
∥y − netAθk (z)∥

2
2 + λ∥xk − z∥22,

θk+1 = argmin
θ

1

2
∥y − netAθ(zk+1)∥22,

xk+1 = prox γ
2λ

,r(xk − η(xk − zk+1)).

(5)

Notice that netAθ is an untrained neural network, with θ being refined during x reconstruction.
Backpropagation only learns the weights in the proximal network. The convergence of the algorithm
in (5) is proved in [34]. Thus, when zK and xK are accurate estimates of x, then netAθ effectively
emulates a reliable forward model, which allows us to use netAθ as part of the loss for self-supervised
learning.

2.3 A-adaptive loop unrolling method for semi-supervised learning
Previous works [38, 23] use the forward model as the training loss for self-supervised learning in
the measurement domain. However, the forward model A for gravitational lensing SR problem is
not known in practice. In this work, we aim to show that A-adaptive method is not only powerful in
reconstruction without knowing A, but because netA is an untrained neural network that allows for
extensive estimation of the forward model for a specific data instance, eliminating the need to use
many data pairs for training. This network can then be incorporated as part of the training loss for
that particular data instance.

For the limited paired data, the network’s training mirrors that of A-adaptive LU. We propose the
following semi-supervised learning strategy to incorporate the remaining unpaired data. As shown
in [34], the A-adaptive LU not only ensures the convergence of the reconstruction xk, but also
progressively refines the accuracy of the forward model approximation netA over iterations. With
the final estimate of the forward model netAθK , we define the semi-supervised training loss,

L = Lsup + Lself = Ex,y∈Dsup ||x− xK(y)||22 + β Ey∈Dself ||y − netAθK (xK(y))||22. (6)

where xK(y) denotes the output of A-adaptive LU at final iteration K that is obtained from input y,
and β is a tunable training hyperparameter.

The supervised A-adaptive LU minimizes the data consistency and the regularization function in
(4). Yet, when with only limited paired data, this approach yields suboptimal reconstructions with
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Table 1: Average testing PSNR and SSIM for super-resolution. The right-most column indicates
the methods that can be trained without A. Among the valid methods, the best performance in each
criterion is in bold.

PSNR / SSIM # data pairs 100 50 25 train w/o A?

Direct recon.
supervised 29.24 / 0.586 27.46 / 0.544 26.53 / 0.527 ✓

semi-sup w/ A 29.64 / 0.592 29.28 / 0.577 28.98 / 0.571
semi-sup w/ fρ 29.42 / 0.574 27.59 / 0.474 25.78 / 0.470 ✓

LU supervised 29.36 / 0.592 28.38 / 0.578 27.27 / 0.563
semi-sup w/ A 29.97 / 0.594 29.96 / 0.594 29.29 / 0.575

A-adaptive LU supervised 29.37 / 0.589 28.15 / 0.575 27.10 / 0.575 ✓
semi-sup w/ A 29.51 / 0.590 28.86 / 0.583 28.10 / 0.579 ✓

inaccuracies in both ||y −Ax̂||22 and r(x̂). Incorporating unpaired data further reduces the error in
||y−Ax̂||22, ensuring that the solution x̂ aligns with the forward model nullspace. Consequently, this
facilitates more effective learning of the correct regularization function through supervised learning
with ground-truth data. We further show that the semisupervised A-adaptive LU is more effective
than supervised methods even without knowing A.

3 Experiments
We use the Model I dataset generated in [39] which consists of lensing images with different
underlying dark matter model to validate the proposed approach. Specifically, this synthetic dataset
consists of three classes of dark matter: no substructure, standard cold dark matter, and axion dark
matter – see [39] for more details on the data set. Each category contains around 29,000 high-
resolution and low-resolution image pairs. We use all low-resolution images for the self-supervised
learning part and vary the amounts of high-resolution images for supervised training. We compare the
proposed semi-supervised A-adaptive LU with training loss in (6) to the following baseline methods,
where the supervised learning methods only use a limited amount of paired data.

• Supervised Autoencoder that learns the direct reconstruction,
• Semi-supervised Autoencoder with known A in loss,
• Semi-supervised Autoencoder with jointly trained forward model network fρ [28] which is

used in loss,
• Supervised LU with known A used in reconstruction,
• Semi-supervised LU with known A used in reconstruction and loss,
• Semi-supervised A-adaptive LU with approximated forward model used in loss.

Table 1 illustrates the average testing peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) values for different amounts of available data pairs. For all supervised learning
scenarios, performance degrades as the number of data pairs decreases. Among the methods tested,
supervised LU outperforms the others, showcasing its data efficiency through the use of an accurate
forward model in both reconstruction and loss computation. Notably, even without knowing A,
A-adaptive LU outperforms the direct reconstruction in supervised training, underscoring its ability
to leverage adaptive estimation of the forward model. The right-most column in Table 1 highlights
the methods trainable without A. Among these three methods, the proposed A-adaptive LU performs
the best by incorporating the estimated forward model as part of the loss. Figure 1 visualizes the
super-resolution results using the methods that can be trained without the forward model A (methods
with checkmarks in Table 1). Notice that with fewer paired data, the reconstructions using direct
inverse are fussier than the proposed method.

More results and discussions of using jointly trained forward models as loss are discussed in Appendix.

4 Conclusion
High-resolution gravitational lensing images are expensive to collect, but large amounts of low-
resolution images are more readily available from survey programs like Euclid and LSST. Model-
based architectures have been shown to be more data-efficient and achieve better quality than learning
direct reconstructions, but they require accurate forward models in both the reconstruction process
and the semi-supervised training loss. In this work, we proposed a semi-supervised learning method

4



that leverages the A-adaptive loop unrolling algorithm. Instead of learning a forward model directly
from data in the traditional way, we use a dynamically adjusted forward model approximation
network as part of the semi-supervised training loss. By approximating the forward model with an
untrained neural network, our method avoids the need for extensive paired data to learn the forward
mapping more accurately for each data instance, making it significantly more data-efficient than
baseline methods. Lastly, we empirically demonstrate that the proposed method achieves significant
performance gains.
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A More Results

Figure 2 depicts the average testing PSNR for the four valid training without A. The dashed lines
in the bottom denote direct reconstruction methods, and the solid lines denote the A-adaptive LU.
With additional unpaired data, semisupervised A-adaptive LU shows a significant improvement over
its supervised counterpart, as indicated by the consistently higher average testing PSNR of super-
resolution results. In contrast, the direct inverse network’s performance does not show consistent
enhancement, and the observed differences are relatively minor.

B Discussion of using a jointly trained forward model as loss

We would like to emphasize the difference between our proposed method and semi-supervised
direct reconstruction with unknown A. While both methods aim to approximate the forward model
using a neural network, the semi-supervised direct reconstruction with unknown A method trains
fθ and the autoencoder jointly, but the proposed method uses an untrained network to estimate the
forward model for each data instance. The proposed method outperforms the semi-supervised direct
reconstruction with unknown A, as shown in Table 1 and Figure 2. The neural network netAθ

leverages the complex structure itself to approximate the forward model, ensuring better alignment
for a specific data instance. The idea of the untrained neural network is introduced in [40] to solve
inverse problems. It allows netAθ to serve as an accurate approximation in the semi-supervised
training loss. By using an unknown neural network to approximate the forward model adaptively
for each data instance, it can tailor the model more precisely to individual variations within the data.
This personalized adjustment allows for better handling of complex patterns and anomalies that a
more generalized model, like the semi-supervised direct reconstruction with unknown A, may not
capture as effectively.

In contrast, while the semi-supervised direct reconstruction with unknown A trains a forward model
network and an autoencoder jointly, it may not offer the same level of individualized adaptation. The
use of a learned forward model as a semisupervised training loss is less accurate than an adaptive
approach, which could lead to suboptimal performance when dealing with diverse or unpaired data.
This discrepancy highlights the advantage of our method.

Figure 2: Average testing PSNR of super-resolution results using the four methods that can be trained
without A. The red curve is the proposed semisupervised adaptive LU, which performs the best with
different amount of paired data.
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