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Abstract

In this work, we explore methods to improve galaxy redshift predictions by combin-
ing different ground truths. Traditional machine learning models rely on training
sets with known spectroscopic redshifts, which are precise but only represent a
limited sample of galaxies. To make redshift models more generalizable to the
broader galaxy population, we investigate transfer learning and directly combining
ground truth redshifts derived from photometry and spectroscopy. We use the
COSMOS2020 survey to create a dataset, TransferZ, which includes photometric
redshift estimates derived from up to 35 imaging filters using template fitting. This
dataset spans a wider range of galaxy types and colors compared to spectroscopic
samples, though its redshift estimates are less accurate. We first train a base neural
network on TransferZ and then refine it using transfer learning on a dataset of
galaxies with more precise spectroscopic redshifts (GalaxiesML). In addition, we
train a neural network on a combined dataset of TransferZ and GalaxiesML. Both
methods reduce bias by ∼ 5x, RMS error by ∼ 1.5x, and catastrophic outlier rates
by 1.3x on GalaxiesML, compared to a baseline trained only on TransferZ. How-
ever, we also find a reduction in performance for RMS and bias when evaluated
on TransferZ data. Overall, our results demonstrate these approaches can meet
cosmological requirements.

1 Introduction

Astronomers are increasingly adopting machine learning methods for redshift estimation, which
is crucial for measuring the distances to galaxies in cosmology. Spectroscopic redshifts (spec-z’s)
are the most accurate, but they are time-consuming and thus impractical for large-scale surveys
involving billions of galaxies [e.g., 21, 41, 8, 11]. Photometric redshifts (photo-z’s) are derived from
measurements of the brightness of galaxies (photometry) from images taken at different wavelengths.
They are less precise but enable the analysis of much larger datasets [37]. Photometric redshift
methods generally fall into two categories: template-fitting and data-driven approaches. In template-
fitting [e.g., 2, 19, 7] a library of broad-band galaxy photometry and redshifts is compared to observed
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photometry to estimate redshifts. Data-driven methods, often involving machine learning, train
models on known redshift samples to predict redshifts for new data [e.g., 5, 12, 9, 37, 22].

A critical factor in the success of machine learning models is the quality and representativeness
of the training data. For redshift prediction models, the most accurate training data comes from
spectroscopic measurements, which precisely probe emission lines and achieve redshift uncertainties
as low as 2× 10−4 [e.g., 47]. However, these measurements are typically limited to bright galaxies
with strong emission lines, representing only a small subset of the galaxies in the Universe. The
COSMOS2020 survey [51] offers a broader dataset, covering a wider range of galaxy types. However,
the median precision of its redshift measurements is approximately 0.03—about 100 times less
precise than spectroscopic redshifts.

The limitation in representativeness highlights the need for methods that can generalize across
different types of data. In this paper we explore two approaches of incorporating ground truths from
real data for training photometric redshift models: transfer learning and mixing ground truths. Transfer
learning [39, 52] offers a promising solution in this regard, allowing models trained on broader,
less-precise datasets like COSMOS2020 to be fine tuned on precise but narrower spectroscopic
datasets to improve their performance. Mixing ground truths approach is an alternative strategy
that combines different sources of redshift measurements at the start of training allowing the model
to simultaneously learn from complementary strengths of spectroscopic and photometric redshift
datasets. Our approach is novel in its exploration of model generalization by incorporating different
sources of ground truth from real data for training photometric redshift models. Understanding these
approaches is particularly important as we look forward to large surveys, where astronomers will
need to overcome the gaps in spectroscopic dataset coverage and volume in the initial years.
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Figure 1: Two datasets: GalaxiesML [15] with spectroscopic redshift ground truth and TransferZ with
COSMOS2020 survey [51] multi-band imaging redshift ground truth. The distribution of the dataset
in redshift (left), i-band magnitude (center), and color (right) shows how the datasets complement
each other to help the model generalize beyond the range of brightness and color sampled by the
spectroscopic surveys.

Table 1: Data Summary

Dataset Number of Redshift Median Redshift i-band mag No.
Sources 90th percentile Uncertainty 90th percentile Filters

TransferZ 116,335 1.9 0.03 25 5
GalaxiesML 286,401 1.2 0.0002 22 5
Combo Data 402,408 1.5 0.0006 24 5

In this work we base our analyses on 5-band photometry to approximate the conditions for the Legacy
Survey in Space and Time (LSST), a major upcoming survey [8, 21]. We created the TransferZ
dataset by integrating data from two sources: the HSC PDR2 [1] wide field survey, which provides
5-band grizy photometry for a query of 3 million sources, and COSMOS2020 [51], which offers
up to 35-band photometry for 1.7 million sources along with photometric redshifts. With 35 bands
of photometry extending from the ultraviolet to the infrared, the photometric redshifts that can be
estimated are much more accurate and precise than those resulting from five-band photometry. This
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is a reasonable basis for a ground truth redshift value [20, 45]. From COSMOS2020 we choose
redshifts computed using LePhare template fitting [2, 19] with at least 30-band photometry from the
CLASSIC subset [51]. To create TransferZ, we cross-match sources from COSMOS2020 with HSC
PDR2 data, filtering for galaxies, and applying quality cuts to ensure reliable ground truth redshifts,
resulting in a refined dataset of 116,335 galaxies with 5-band grizy photometry (g: 4754 Å, r: 6175
Å, i: 7711 Å, z: 8898 Å, y: 9762 Å) from HSC PDR2 and reliable redshifts from COSMOS2020. For
more details, see Appendix A.

We use TransferZ as a broader and more general galaxy sample for redshift estimation to train the
baseline model and then transfer learn using GalaxiesML [15], which has ground truth for redshifts
from spectroscopy. The two datasets complement each other (Fig. 1). GalaxiesML has 286,401
galaxies, with 90% of the galaxies having i < 22 mag and most galaxies have redshifts < 1.2 (note
that larger magnitude values mean the galaxies are fainter). This dataset is built on HSC PDR2 [1]
and its associated spectroscopic database [29, 6, 32, 46, 34, 27, 17, 30, 14, 38, 10, 13]. TransferZ
has 90% of its galaxies with i < 25 mag and redshifts < 1.9. TransferZ contains a higher number of
galaxies in the cosmologically relevant range of 0.3 < z < 1.5, potentially enabling representational
analysis at higher redshifts than GalaxiesML alone. While TransferZ probes much fainter galaxies
and more galaxy types, the redshift uncertainties from the 35-band photometry are typically 100
times larger than GalaxiesML with spectroscopy (Table 1). We note that there are 500 galaxies (about
0.1% of the total) in common between both TransferZ and GalaxiesML (Fig. 1). We assume the
impact of this overlap is negligible for this experiment, but this can be verified in the future.

We also created a combination dataset called Combo that combines both TransferZ and GalaxiesML
to test whether combining two types of ground truth is equivalent to transfer learning from one dataset
to another. When there are both spectroscopic and COSMOS2020 photometric redshifts for the same
galaxy, we choose to include only the spectroscopic redshift, because it is more accurate (about 500
galaxies are affected). The combo dataset consists of 402,408 galaxies. The datasets are split into
80% training, 10% validation, and 10% testing sets. In the following sections, we refer to TransferZ
as the source data, GalaxiesML as the target data, and Combo as combo data. TransferZ is made
available on Zenodo with a DOI: 10.5281/zenodo.14218996.

3 Methodology & metrics

We employed a neural network (NN) architecture based on [24, 22] for photometric redshift estimation,
consisting of four fully connected layers with ReLU activation and a skip connection. Hyperparameter
tuning was performed with the source training and validation data using HyperBand [28]. The
Hyperband search space for training the NN includes 1 to 10 hidden layers with 32 to 2048 neurons
per layer, whether to include a skip connection, and whether to add additional dense layers. If
additional dense layers are included, they range from 1 to 10 hidden layers with 32 to 4096 neurons
per layer. The final model has the four initial hidden layers with 200 neurons each followed by a
skip connection and two additional hidden layers with 2000 neurons each. All hidden layers use the
rectified linear unit (ReLU) activation function.

The base model (NN-Base) was trained on the TransferZ dataset using the Adam optimizer with a
learning rate of 5× 10−4, a batch size of 512, and for 500 epochs. Transfer learning (NN-TL) was
then applied by fine-tuning the NN-Base model on the GalaxiesML dataset, freezing all layers except
the input and the first and fifth dense layers, with a reduced learning rate of 5× 10−10 and trained for
1000 epochs.

The model trained on the combined data (NN-Combo) is hyperparameter optimized similarly to the
NN-Base model. The final model has 6 hidden layers and a skip connection between inputs and
the hidden layers. NN-Combo was trained on the Combo dataset using the Adam optimizer with
a learning rate of 5 × 10−4, a batch size of 512, and for 2000 epochs. The three model trainings
achieve optimal performance before the reported epochs since learning curves plateau earlier.

A custom loss function, L(∆z) = 1 − 1
1+(∆z/0.15)2 , is used [47] for training. The photometry

data is normalized separately for each training stage. Performance was evaluated using bias, root
mean square error (RMS), and the catastrophic outlier rate on the test sets within the redshift
range of 0.3 < z < 1.5. The bias metric is the median of the bias distribution defined as b =
(zphoto − ztruth)/(1 + ztruth) where zphoto and ztruth is the estimated photometric redshift and
the ground truth redshift, respectively. The RMS is defined as the interquartile range of the bias
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distribution divided by 1.349 weighted by the median redshift in the bin (1 + ztruth) [18]. This
definition of RMS is less sensitive to outlier rates than standard definitions. The catastrophic outlier
rate is defined as the fraction of objects where the absolute difference between photometric and true
redshifts exceeds 1.0, expressed as |zphoto − ztruth| > 1.0. These are among the most important
metrics for cosmology [4, 21]. The metrics are evaluated for NN-Base, NN-TL, and NN-Combo test
datasets. We compare our metrics to those in [23], where they use a NN trained on GalaxiesML. The
comparison highlights the benefits of mixing ground truths against a spectroscopic ground truth.

4 Results & Discussion

In this work, we test different ways of combining different sources of ground truth for photometric
redshifts - either through transfer learning or by combining the training datasets. We find that both
methods are better than the base model, which is only trained on the TransferZ dataset. This suggests
that it is possible to improve photometric redshift estimates by combing multiple sources of ground
truth. The choice between the two methods should be based on which metric best serves the scientific
objectives. Below we summarize the benefits and limitations of our approaches: transfer learning of
the NN model on the source (TransferZ) and target (GalaxiesML) datasets, and a model trained on
the combination of GalaxiesML and TransferZ (Combo) dataset.
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Figure 2: Comparison of redshift predictions from the three neural network models in this work (NN-
Base, NN-TL, and NN-Combo) against true redshift values. We show results for the GalaxiesML test
dataset using spectroscopic redshift as ground truth. Results shown are from one randomly selected
run out of 100 total iterations.

Table 2: Model Metrics Summary

Bias (×10−3) RMS (×10−3) Cat. Outlier
Rate (×10−2)

NN-Base TransferZ -0.69 ± 2.37 22.6 ± 0.35 1.29 ± 0.25
GalaxiesML -10.9 ± 5.71 22.4 ± 1.23 2.49 ± 0.15

NN-TL TransferZ 7.45 ± 3.12 28.5 ± 0.86 0.40 ± 0.13
GalaxiesML -1.51 ± 1.66 15.4 ± 0.27 1.68 ± 0.14

NN-Combo TransferZ 1.14 ± 1.74 23.0 ± 0.33 1.33 ± 0.29
GalaxiesML -1.92 ± 1.68 15.0 ± 0.23 1.89 ± 0.17

Model predictions are evaluated against test datasets comprising of 40,914 galaxies from GalaxiesML
and 11,633 from TransferZ. Both NN-TL and NN-Combo perform comparably within the redshift
range of 0.3 ≤ z ≤ 1.5, exhibiting similar prediction patterns and improving upon the base model
(Fig. 2). Both NN-TL and NN-Combo have small scatter in their predictions at these redshift ranges
compared to the base model. Quantitatively, we evaluate the model’s predictions using three metrics –
bias, RMS, and catastrophic outlier rate, these are reported in Table 2. We compare the fractional
change of the metrics on both target and source data against NN-Base metrics. Evaluating NN-TL
(NN-Combo) on the target data shows 7.19 (5.65) times lower bias, 1.45 (1.49) times lower RMS,
and 1.48 (1.32) times lower catastrophic outlier rate. The largest magnitude change can be seen
for bias, which is important as confidence in a redshift bin assignment is crucial for cosmological
measurements requiring precise redshift distributions. The catastrophic outlier rate remains below
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10% across all models, showing that neural network can effectively control a major systematic
contaminant in photometric redshift measurements.

For the source data metrics, we find NN-TL reduces the catastrophic outlier rate compared to NN-
Base, but performs worse on bias and RMS. The metrics of NN-Combo are comparable to those of
NN-Base on the source data. Evaluating NN-TL (NN-Combo) on the source data shows 3.24 times
lower (1.23 times higher) catastrophic outlier rate. However, it shows a bias 10.7 (1.64) times higher
and RMS 1.26 (1.02) times higher. The increase in bias on the source data after transfer learning
on a new ground truth suggests some loss of the originally learned features. The model trained on
combined ground truths is similarly affected but to a lesser extent, meaning it better leverages both
sources of truth.
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Figure 3: From left to right, comparison of the bias, outlier and RMS metrics between the baseline
NN, transfer-learnt NN, combo NN, and [23]. The metrics are evaluated on the target (blue) and
source (orange) data within the range of 0.3 ≤ z ≤ 1.5. The error bars are generated from 100
random initializations of the model training. We report [23] scatter value for RMS. While [23] use a
different RMS definition, our RMS calculation is equivalent to their reported scatter value.

The results also show both transfer learning approaches and models trained on combined ground
truth data improve photometric redshift predictions compared to single-dataset training. Our transfer
learning model performs better than the one from [23] (henceforth J24), which uses only the target
dataset (Fig. 3). In comparing our two approaches for handling mixed ground truth data, the advantage
of the models depends on the metric. The Combo model performs better than the transfer learn model
on bias (6 times lower) and RMS (1.2 times lower) on target data, and marginally on RMS (1.03
times lower) for source. However, it performs worse on bias (1.27 times higher) on the target dataset.
Additionally, the catastrophic outlier rate on target data is 1.12 times higher and on source data 3.24
times higher. Depending on the science needs, the best approach needs to align with the science goal.

There are several limitations to both NN-TL and NN-Combo. The model from J24 achieved a
bias of one order magnitude lower than our approach in NN-TL and NN-Combo evaluated on the
GalaxiesML. In addition, there are some notable features in the figure showing the prediction versus
true redshift, such as the clustered predictions at 0.5 ≤ ztruth ≤ 1 and 1.5 ≤ zpred ≤ 3 in the target
dataset (Fig. 2). This suggests there is a source of systematic error (to be analyzed in a forthcoming
paper). NN-TL also shows limited accuracy at ztruth > 3 from sparse training data in these redshift
ranges at each training step, while NN-Combo achieves accurate predictions through its training
approach of combining both datasets in one training step.

Previous work explored the use of transfer learning in the context of improving redshift estimates
using a combination of simulated and real data [16, 36], but to our knowledge, this is the first work to
apply transfer learning from only real data to generalize photometric redshift predictions. Both of
our models (NN-TL and NN-Combo) are capable of incorporating two sources of ground truth, but
there are a number of ways that the models can be improved upon. For example, our models do not
produce uncertainties. Extending transfer learning to probabilistic ML models will be important for
more scientific applications [e.g, 3, 40, 50, 22]. Additional tests of how well this model generalizes
will be important to validate the improvements. One approach could be to use this model to detect
galaxy clusters in existing data. Galaxies within the same cluster will be at the same redshift, but
will consist of many galaxy types, which allows us to independently quantify the generalizability of
the models. Ultimately, this could help solve one of the most challenging problems for surveys like
LSST: providing reliable photometric redshift measurements for testing models of cosmology.
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A Data Creation

A.1 COSMOS2020 Photometric Redshifts

In this work, we make use of photometric redshifts from the latest release of the Cosmic Evolution
Survey (COSMOS; [44]) catalog (COSMOS2020; [51]) consisting of over 1 million sources. The
COSMOS field covers about 1.7 deg2 of the sky and has been observed across the electomagnetic
spectrum by the Galaxy Evolution Explorer (GALEX; [53]) in the far-UV to near-UV, the Canada-
France-Hawaii Telescope Large Area U-band Deep Survey (CLAUDS; [43]), the Hyper Suprime-Cam
Subaru Strategic Program (HSC-SSP; [1]) and Suprime-Cam (SC) data ([48, 49]) on the Subaru
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telescope in the optical, the UltraVISTA survey (UVISTA; [31, 33]) in the near-infrared, and the
Cosmic Dawn Survey [42, 35] using Spitzer in the mid-infrared. The surveys cover the area in the
X-ray, optical, and infrared, enhancing our studies in galaxy evolution and nature of dark matter.

The COSMOS2020 catalog is composed of two separate catalogs labeled CLASSIC and THE FARMER.
CLASSIC uses aperture photometry methods while THE FARMER uses profile fitting methods (The
Tractor;[26]) for the photometry measurements of extended sources. In addition, the catalogs provide
photometric redshifts from two independent template fitting codes LePhare [2] and EAZY [7] along
with additional outputs.

In this work, we make use of sources that are common to both catalogs. The CLASSIC catalog
contains 1, 720, 700 sources with photometric redshifts computed using up to 35-bands while THE
FARMER consists of 964, 506 sources with photometric redshifts computed using up to 30-bands. The
discrepancy arises from the variable Point Spread Function (PSF) of the Suprime-Cam medium bands,
which THE FARMER could not overcome. After cross-matching using internal IDs, there is 923, 403
common sources among the two catalogs.

Our decisions in Section A.3 depend on the reliability of the photometric redshifts. Among
the different combinations of photometry (CLASSIC/THE FARMER) and photometric redshift codes
(LePhare/EAZY), the numbers of bands fit by the photo-z codes is not consistent. CLASSIC/LePhare
uses up to 35 bands. CLASSIC/EAZY uses up to 30 bands, excluding GALEX data and Suprime-Cam
broad bands due to their limited depth and PSF issues (Suprime-Cam and UltraVISTA narrow bands
are also excluded, though no explicit reason is provided). THE FARMER/CLASSIC uses up to 30 bands,
excluding the Suprime-Cam broad bands. THE FARMER/EAZY uses up to 27 bands, excluding the
Suprime-Cam broad bands, GALEX FUV/NUV bands, and all narrow bands. While photometry
cannot reach the precision of spectroscopy, more photometric bands reduces degeneracies in redshift
measurements. Since CLASSIC/LePhare’s photometric redshifts are estimated using the largest num-
ber of bands, this set is chosen as the labels used in our neural network training involving TransferZ.
Specifically, we use lp_zPDF for a galaxy corresponding to the median of the photometric redshift
likelihood distribution.

A.2 HSC Photometry

For our analysis we compile five-band (grizy) photometry to approximate data produced by large
scale surveys in comparable depth [21, 8, 11, 41]. We use data from the HSC Subaru Strategic
Program’s (HSC-SSP) second data release (HSC PDR2; [1]) in the wide field that reaches similar
depths as LSST but over a smaller area coverage. The HSC wide-field camera is mounted on the
Subaru Telescope with a FOV of 1.8 deg2. The survey has observed over 900 deg2 of the sky across
five optical filters (grizy) with a median seeing in the i-band of 0.58" and a median 5σ depth of 26.2.
The HSC-SSP survey does not have a bluer band unlike LSST which is expected to have six optical
filters ugrizy.

Our analysis draws from a query of over 3 million sources around the COSMOS field from the
HSC-PDR2 Wide catalogs. Our photometry data is queried from HSC-SSP’s data release site. No
initial constraints are placed on this query of our data. In addition, we query for a sample of galaxies
with spectroscopic redshifts for validation. In Section A.3, we use these spectroscopic redshifts to
guide the quality of our cuts.

A.3 TransferZ

We created the TransferZ dataset, a dataset consisting of galaxies with grizy photometry and reliable
photometric redshifts following the workflow shown in Figure 4. The creation of TransferZ is split
into two main steps: combining galaxy HSC data with COSMOS2020 data and performing quality
cuts to ensure reliable features and labels. In this work, HSC grizy photometry serve as our features
and LePhare photometric redshift lp_zPDF from the CLASSIC catalog of COSMOS2020 serve as
our labels. See Section A.1 for more details about these criteria.

A.3.1 Cross-match Datasets and Galaxy Filter

The combination of HSC and COSMOS2020 data involved two steps. (1) A positional cross-match of
HSC PDR2 sources with the COSMOS2020 catalog subset from Section A.1 within 1". (2) We filter
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COSMOS2020:
Classic
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COSMOS2020:
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HSC-COSMOS:
Tabular Data
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Figure 4: Flow chart showing the steps used in creating the TransferZ dataset. Green rectangles
represent processes and blue rectangles represent inputs. The red rectangle is the dataset released
with this paper.

for galaxies using LePhare classification method lp_type = 0 when available, otherwise defaulting
to HSC source classification i_extendedness_value = 1. We are aware that [51] advises against
using LePhare classifcation; however, we find a strong agreement between HSC and COSMOS2020
classification methods, with 88% accuracy when we consider COSMOS2020 classification as the
ground truth. The step reduces our dataset to 670,053 galaxies.

A.3.2 Quality Cuts

The quality cuts are similar to [45] where the cuts are split in two categories: COSMOS2020
photometry cuts and direct cuts to the photometric redshift quality. We note that the analysis in their
work makes use of COSMOS2015 [25], a previous iteration of the COSMOS catalog which consists
of aperture based photometry and photometric redshifts computed by LePhare photo-z code.

First, we implement cuts on COSMOS2020 photometry quality used in their redshift estimation.
We require quality measurements in the bands used for their redshift estimation, as poor quality or
missing photometry degrades estimated redshifts. We limit the requirement of photometry between 0
and 50 mag for 23 bands from HSC (grizy), Suprime-Cam (medium band filters), UVISTA (YJHKs),
and Spitzer/IRAC (channel 1 and channel 2). These filters are consistent across estimated photometric
redshifts from the four configurations (aperture based and profile-fitting based photometry processed
by LePhare and EAZY). The u and u∗ band filters are ignored as galaxies at redshift z ≈ 3.3 and
beyond would not be detected in these bands due to absorption by neutral hydrogen (this absorption
creates what is known as the Lyman break at a rest-frame wavelength of 912 Å).

Second, we apply cuts to ensure photometric redshift quality and agreement between all redshift
configurations in COSMOS2020. We first exclude galaxies lacking redshift measurement across
all configuration and require robust χ2 fits in both photo-z codes. Following [45], we applied a
threshold of χ2 < 1 for fits from CLASSIC/LePhare. For the other configuration, we define the
threshold to remove the same fraction of galaxies as the CLASSIC/LePhare threshold. Additionally,
for LePhare redshift estimates, we require close agreement (|lp_zPDF - lp_zMinChi2| < 0.1)
between the redshift at the peak of the likelihood distribution and the redshift that minimizes χ2.
We also require CLASSIC/LePhare photometric redshifts to agree with the other configurations, as
CLASSIC/LePhare photometric redshifts serve as the ground truth labels in our training. We restrict
our sample to z < 4.

Finally, we implement cuts on our training features which we use the HSC-PDR2 grizy photometry
cModel magnitudes. We require these values to be between 0 and 50 mag. After all cuts, TransferZ
contains 116,335 galaxies.
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