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Abstract

The domain of laser fusion presents a unique and challenging predictive mod-
eling application landscape for machine learning methods due to high problem
complexity and limited training data. Data-driven approaches utilizing prescribed
functional forms, inductive biases and physics-informed learning (PIL) schemes
have been successful in the past for achieving desired generalization ability and
model interpretation that aligns with physics expectations. In complex multi-
physics application domains, however, it is not always obvious how architectural
biases or discriminative penalties can be formulated. In this work, focusing on
nuclear fusion energy using high powered lasers, we present the use of Kolmogorov-
Arnold Networks (KANs) as an alternative to PIL for developing a new type of
data-driven predictive model which is able to achieve high prediction accuracy and
physics interpretability. A KAN based model, a MLP with PIL, and a baseline
MLP model are compared in generalization ability and interpretation with a domain
expert-derived symbolic regression model. Through empirical studies in this high
physics complexity domain, we show that KANs can potentially provide benefits
when developing predictive models for data-starved physics applications.

1 Introduction

Inertial confinement fusion [1] (ICF) is an approach to nuclear fusion power and clean energy that
uses high power lasers to achieve conditions similar to stellar interiors in the laboratory, and is
governed by complicated and deeply nonlinear underlying physics. Sophisticated multi-physics
solvers are traditionally used to understand the physics of ICF, but despite significant progress in
high-fidelity integrated simulation capabilities for ICF [2, 3], simulations alone are not sufficient
to predict outcomes of experiments a priori and their utility to design future experiments remains
limited. This lack of predictive capability is a major impediment towards realizing nuclear fusion via
inertial confinement as a viable clean energy source.

To bridge the gap between simulation predictions and experimental outcomes, data-driven approaches
are utilized. Past approaches have relied on using physics intuition for prescribing functional forms
(piece-wise power laws) for physically motivated models using quantities derived from simulations
[4, 5, 6]. In order to relax the hypothesized functional form assumptions similar models to [4, 5, 6]
were developed in [7], where multi-layer perceptrons (MLPs) were used due to their function
approximation abilities indicated by the universal approximation theorem. However, [7] found that
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for their small-sized dataset the inclusion of applicable inductive biases was needed to improve
prediction generalization and model interpretation to be in accordance with physics expectations.

Our work presented attempts to address physics-based regression problems that require minimal
assumptions on the underlying functional terms to explain the data, but are not amenable to physics-
informed or augmented solutions[8, 9, 10]. This can be either due to complexity in explicitly
formulating desired model properties into discriminative penalties as is conventionally done in
physics-informed learning (PIL) and inapplicability of model design methods such as physics-
augmented learning [8]. In essence we showcase our work to an audience where limited data makes
learning desired model properties solely from data alone challenging and it is not efficient or obvious
on how to effectively construct a Lphys term (defined in Eq. 1) which is augmented with the usual
loss functions,

Lphys =

n∑
i

γiΨi(f(xi; θ)) (1)

where n is the input feature dimension, Ψ is an operator which captures deviations from the desired
property, f(x; θ) is the neural network and γ is the strength of the penalty. Constructing an effective
Lphys is a typical requirement for multiple methods that interleave physics with deep learning.

We show that in our particular use case of developing a new type of predictive model for direct-
drive laser fusion the Kolmogorov-Arnold Networks (KANs) proposed by [11] has shown modest
improvement for generalization on out-of-distribution (ood) data and comes closest in its interpretation
with a domain expert derived model when compared with applicable PIL schemes. The PIL schemes
are implemented through the Lphys term and are constructed to include all the Ψ that can appropriately
be considered prior knowledge. The ICF prediction model presented uses an input parameterization
that makes it more general in directly relating the prediction quantity with experimental design
features compared with the works of [4, 5], thus aiding in experimental design. We hypothesize that
the learnable activation functions feature of KANs acts as a form of conformal/learnable inductive
bias through learning of internal degrees of freedom (B-splines)[11]. The precise nature of the
external and internal degrees of freedom and their role in making KANs successfully learn details of
the physical system will be explored future works.

2 Dataset and Modeling Task

The empirical data used in this study come from cryogenic implosion experiments conducted on
the OMEGA Laser Facility from 2016 to present that are relevant to fusion energy. The substantial
difficulty in conducting these experiments limits the data to ∼300 samples, which precludes the
use of many successful ML techniques. Using this database, the objective is to develop a model of
the experimental fusion yield, which is the number of reactions and therefore is proportional to the
energy released by nuclear fusion.

The fusion yield obtained in these experiments depends on the energy delivered to the fusion fuel
target, details of energy delivery to the target via the laser power history[1], specifications of the
fusion fuel payload[1], and 3-dimensional effects [5, 6]. Using a parameterization of the experimental
fusion yield dependencies, the modeling task is to learn a mapping function which is given in general
terms below,

Yexp = f(EL,Rout, M̂, R̂,
Rb

Rt
,

α

IFAR
,CR, V̂, Ŷ,Tmax

min
,YOCsim

He ) (2)

where the inputs are described in more detail in Appendix A.1 and are physically motivated - however,
the precise details of how the experimental yield depends on these inputs and their interactions is
not yet well understood. We note that such fusion yield dependence parameterizations have been
successful in the works of [4, 5, 6], though the parameterization in Eq 2 is more general than the
previous mentioned works.

3 Methods
Evaluation Criterion The KAN based mapping model is compared in its prediction ability on
ood experimental samples and in its agreement with the expert derived mapping function given in
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Eq. 3. It should be noted that the domain expert derived model is not considered the "oracle" mapping
relation as simplifying assumptions such as the absence of interactions between the input parameters
is assumed in the formulation. The presence of complex interactions due to physics considerations is
hypothesized [6, 7], however the nature and extent of the interactions is unknown. This motivates
the use of automatic functional "finding" methods. However, when using these methods the inferred
dependencies of Yexp on input parameters (shown in Eq. 2) found need to be on average consistent
with the physics of the model in Eq. 3. This is also used as an evaluation criterion and informs which
model is preferable.

Due to design intent by physicists at OMEGA, the empirical database is curated into sets called
"campaigns". However, it is not obvious how distinctions between campaigns correspond to dis-
tinctions in input parameter space. Therefore, for ood tests k-means clustering [12] is utilized to
partition the dataset. The number of clusters is determined using a silhouette method [13] with
the scan being restricted to the total number of unique campaigns in the dataset (29 campaigns).
Given the clusters the dataset becomes D = {D1,D2, ...,DN} where N is the total number of
clusters (N = 6). A test dataset Dtest ∈ D is chosen and correspondingly the train dataset becomes
Dtrain = {X|X ∈ D ∧X /∈ Dtest} where X are the input-target pairs. The mean squared error
(MSE), 1

N

∑N
i=1(ŷi − yi)

2, where ŷ is the model prediction and y is the ground truth is compared
across the models for all clusters used as Dtest. The prediction error ŷi−yi

yi
× 100 (<> ±σ) on a new

subset of experiments is also compared using these models as a means to probe prediction ability for
future experiments.

3.1 Domain Expert Model

Intuition and physics knowledge is used to derive the domain expert model which is an evolution of
the models in [4, 5, 6]. This model is represented as a piece-wise power law and is given below in
Eq. 3.

Yexp = E2.3
L R−2.6

out M̂2.9R̂
26.5

(
Rb

Rt

)1.6

Rb
Rt

<0.86

(
Rb

Rt

)−3.0

0.86<
Rb
Rt

<1

(
Rb

Rt

)0

Rb
Rt

>1

(
α

IFAR

)0.45
<1

(
α

IFAR

)−0.1

>1

V̂
2.02

Ŷ
0.78

T
(−1.32)
max
min

(YOCsim
He )

1.26

(3)
One major drawback of this parametrization strategy is the lack of interaction effects between the
terms. Simple physics intuition, verified in some cases by multi-physics simulations[14] show that
interaction effects can be important, but it is non-trivial to formulate them correctly in a closed-form
parametrization. Capturing these effects is of high importance, not only to better predict the outcomes
of future designs, but also because the details of interactions can point towards physical behaviors
that are important in ICF experiments.

3.2 Physics-informed Model

For the MLP PIL model, a fully connected MLP, fMLP(X) = (σWN ◦ σWN−1 ◦ · · · ◦ σW1)X
with a loss function L = LMSE +Lphysics is used. The Lphysics is constructed such that it enforces
properties that are definitively considered prior knowledge (explained in Appendix A.3).

Lphysics = γ1

∣∣∣∣∣ ∂̂f(x; θ)∂Tmax
min

∣∣∣∣∣+ γ2

∣∣∣∣∣ ∂̄f(x; θ)

∂YOCsim
He

∣∣∣∣∣ (4)

Where, ∂̂f(x;θ)
∂T max

min

=

0 if ∂f(x;θ)
∂T max

min

≤ 0

∂f(x;θ)
∂T max

min

if ∂f(x;θ)
∂T max

min

> 0
and ∂̄f(x;θ)

∂Y OCsim
He

=

{ ∂f(x;θ)

∂Y OCsim
He

if ∂f(x;θ)

∂Y OCsim
He

< 0

0 if ∂f(x;θ)

∂Y OCsim
He

≥ 0

For the baseline MLP model only the LMSE loss is used while the rest of the training configuration
and model architecture is kept the same as the MLP with PIL model.

3.3 KAN Model

Differing from MLPs, KANs have no linear learnable weights fKAN(X) = (ΦN◦ΦN−1◦· · ·◦Φ1)X,
each weight parameter in Φ is replaced by a learnable univariate function constructed using B-spline
basis functions [11]. The KAN based model is trained using solely the LMSE loss.
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4 Results and Discussion

Figure 1: Inferred Yexp variation across different models compared with the expert derived model,
shown in arbitrary units (A.U)

Main results To interpret the learned behavior of the model, the partial dependence method [15] is
utilized where f(x; θ) is varied as a function of its input arguments. The average Yexp variation on
input parameters from the models is shown in Fig. 1 along with the domain expert derived model
dependencies for direct comparison. All the models generally align with the expert derived model.
However, the KAN model is in better agreement with the expert model as illustrated in Fig. 1.
Important notable differences between the models are for the Rb

Rt
and α

IFAR terms. Due to multiple
competing physics effects[6, 14] the optimum value of Rb

Rt
≈ 0.85. While both models capture this

nature, the strong dependence of Yexp with Rb

Rt
for Rb

Rt
< 0.85 is more accurately captured by the

KAN model. The rapid fall off of for Yexp below 0.85 is justified in the expert model based on detailed
physics studies[14] and only the KAN model is able to correctly recover this behavior. We can make
a similar case for the α

IFAR term, though in this case the justification for the dependence inferred
by the expert model is based largely on physical intuition. As α

IFAR decreases, Yexp is expected to
undergo a transition from weak dependence to strong dependence, at which point Yexp is expected to
drop dramatically. KAN also recovers this behavior with more fidelity than the MLPs making it the
preferable choice. Although, it can be argued that a suitable Lphysics to capture the above mentioned
effects in the PIL model can be devised, these aspects of Rb

Rt
and α

IFAR have been uncovered through
detailed and expensive high-fidelity physics simulations [14, 16] and dedicated experiments and as a
result are included in the domain expert model. Thus, we postulate that information of this type isn’t
available a priori and shouldn’t be included when investigating the merits of PIL schemes for this
(re)discovery investigation. The functional approximation methods that can automatically uncover
these properties from the data are preferable.

Out-of-distribution tests The KAN model on average (<> ±σ) achieves an incremental advantage
on MSE scores across the clusters (0.00394±0.00410 vs next best 0.00926±0.00506). This translates
to prediction errors of (0.6 ± 5.9)% using the KAN model, (1.2 ± 9.5)% using MLP PIL model and
(9.6 ± 4.2)% using the MLP model when tasked to predict the outcomes of new experiments. The
prediction error using the domain expert model is (12.8 ± 10.4)%.

Discussion The benefit of the KAN model in terms of generalization ability is not conclusive
solely from these ood tests. The new experiments mentioned are not true ood samples as they have
overlap with previous experiments. This is often the case in the domain of laser direct-drive fusion.
Furthermore, the data comes from real-world experiments and thus has random variations which
also complicates any benefit interpretation. To further elucidate any generalization benefit the use of
variational autoencoders based segmentation[17] of the data would be investigated in future works.
We note that for the Tmax

min
and YOCsim

He terms the MLP PIL model can be brought in closer agreement
with the expert model by tuning the hyperparameters γ1 and γ2. An added advantage of KANs is
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that for instances of nonphysical behavior such as the curl up behavior for low argument values
in the YOCsim

He and V̂ plots, the grid extension technique [11] could be performed post-training to
fine-tune the spline hyperparameters which can mitigate such nonphysical behaviors. However, we
leave this investigation on the choice of spline/grid hyperparameters pre-training and post-training
for future works. In summary, the KAN model comes closest to reproducing the aggregate behavior
of an expert derived model while also allowing for interaction effects between the inputs, which
can possibly explain the better predictive ability on the new mentioned experiments. The physical
interpretation and validity of these interaction effects will be investigated as the KAN is used to
design new experiments, and will be discussed in subsequent publications.
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A Appendix / supplemental material

A.1 Input Parameter Description

Table 1: Model input parameters

Parameter Description
EL Total laser energy on fusion fuel target.
Rout Target outer radius.
M̂ Massfuel in ice form

Masstarget total

R̂ Radiusinner
Radiusouter

Rb

Rt
Captures effects of σrms illumination nonuniformity[6, 14].

α
IFAR Stability parameter[6, 16], captures effect of short-wavelength perturbations.
CR Initial outer shell radius/inner shell radius at maximum compression.
V̂ Ad-hoc parameter capturing nonlinear effect of pulse shape on maximum achieved velocity.
Ŷ Ad-hoc parameter capturing nonlinear effect of pulse shape on simulated yield.
Tmax

min
Captures degradation magnitude when ion temperature asymmetries are present.

YOCsim
He Captures the degrading effect of 3He gas contamination due to fuel target’s age.

A.2 Model architecture, hyperparameters and training details

Architecture and hyperparameter optimization An informal grid search was used to optimize the
model architecture and hyperparameter configurations. In future works a more formal approach for
hyperparameter optimization and architecture ablation would be used utilizing the bayesian hyperprop
strategy [18].

Compute All models are trained on a desktop workstation with a single Nvidia RTX 6000 GPU.
The KAN model takes ≈ 30 mins to train. The MLP and MLP PIL models take ≈ 180 mins to train
on a single train-test split.

Train-test split Scikit-learn[19] KFold was using for 21 train-test partitions, all results apart from
out-of-distribution results are presented using split number 8.

K-means for out-of-distribution tests Scikit-learn[19] silhouette_score and KMeans were used to
obtain clusters for out-of-distribution tests, six clusters were used.

Table 2: MLP PIL and MLP configuration

Hyperparameter Value
Input layer width 16 (extra parameters for one-hot encoding of target composition)

Fully connected hidden layer widths 71-71-71
Learning rate 1e-3

Drop-out regularization 0.1
Optimizer Adam [20]
Batch size 11

Epochs 3000
Early stopping on train loss

Loss function MLP LMSE

Loss function MLP PIL LMSE + Lphys
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Table 3: KAN training configuration. The implementation is utilized from the following source,
https://github.com/Blealtan/efficient-kan.git

Hyperparameter Value
Input layer width 16 (extra parameters for one-hot encoding of target composition)
Number of layers 7

Layer widths 71
Grid size 5

Spline order 3
Learning rate 1e-3

Drop-out regularization 0.2
Optimizer Adam [20]
Batch size 11

Epochs 500
Early stopping on train loss

Loss function LMSE

A.3 Lphysics explanation

The Lphysics in Eq. 4 for both terms can naively be applied as a penalty whenever deviations from
the MLP PIL model is exhibited during training as for both terms simple physics consideration can
be used to establish the validity of the expected trend.

The Tmax
min

can be trivially shown[21] to be related to the residual kinetic energy of the fusing plasma.
Ideally, all the kinetic energy is converted to internal energy of the fusing plasma, which then results
in fusion. Reducing the amount of kinetic energy → internal energy monotonically reduces the
reaction rate and therefore the number of reactions, thereby requiring that ∂Yexp

∂T max
min

must be negative.

The term Y OCsim
He expresses the degrading effect resulting due to the target’s age which is the

time between when target assembly begins and when the experiment is executed. As the target age
increases Y OCsim

He → 0. Due to natural β decay some of the fusion fuel is constantly converted
in 3He which through established physics causes increased radiation losses and because this gas
accumulates in the gas region of the fusion fuel target this leads to a reduction in the amount of fuel
compression that can achieved in the laser fusion scheme. It can simply be deduced that both of these
effects monotonically reduce Yexp.

In comparison to these two effects, the dependence of Yexp on Rb

Rt
or α

IFAR is not trivial. Both these
terms have competing effects that either reduce or increase Yexp, Rb

Rt
going down means more

degradation seed[14], but also means better laser inefficiency mitigation = better energy transfer. Not
obvious which one is stronger, where the trade-off is maximized, if its uni-modal, monotonic, etc,
α

IFAR going down means better simulation performance but worse experiment performance. Again,
not clear if its uni-modal, bimodal, monotonic, etc. It needs to be learned from the data.
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