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Abstract

Laser-induced breakdown spectroscopy (LIBS) is a rapid chemical analysis tech-
nique which has many applications in both academia and industry. Traditional
techniques for analyzing the spectra to predict elemental composition include
partial least squares (PLS) and random forest regression, but these methods are
limited in their scalability and performance. Recently, neural networks (NNs) have
been applied to this task with the goal of achieving more accurate predictions.
However, quantifying the predictive uncertainty of NNs is a challenge. In scientific
domains, accurate estimates of predictive uncertainty are critical for evaluating
model performance, particularly when trained models are applied to new data. In
an effort to solve this problem, Bayesian Neural Networks (BNNs) introduce a
probability distribution over model parameters to allow uncertainty to propagate
through the network. Predictive queries can then be answered alongside various
uncertainty measures. In this paper, we show that BNNs can provide good predic-
tive performance on LIBS data while delivering additional insights on elemental
compositions through well-calibrated uncertainty estimates.

1 Introduction

Over the last decade, advances in Bayesian learning in deep NNs have demonstrated improved
robustness to overfitting, while remaining competitive in performance in classification and regression
tasks [1]. The potential for added uncertainty quantification is highly beneficial in specialized
domains such as healthcare, finance, and planetary science. While traditional NNs rely on optimizing
point estimates, Bayesian deep learning assumes weights are drawn from a posterior distribution,
introducing a measure of uncertainty in the network. The primary challenge of probabilistic methods
is accurately estimating the predictive posterior distribution. Common methods like Variational
Inference (VI) [2] and the Laplace Approximation (LA)[3] to approximate the posterior distribution
of the model given the data. This paper evaluates VI with a Convolutional Neural Network (CNN)
utilizing the local reparameterization trick [4] against standard deterministic models in the context of
analyzing spectral data.

We compare predictive models on data replicating the atmospheric conditions and material makeup of
the martian surface obtained from the ChemCam instrument developed for the Mars rover Curiosity.
Curiosity’s laser, camera and spectrograph all work together to identify the chemical and mineral
composition of rocks and soils. The instrument can rapidly identify the kind of rock being studied
(volcanic or sedimentary); determine the composition of soils and pebbles; measure the abundance
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Figure 1: Laser Induced Breakdown Spectroscopy (LIBS) uses a laser to induce plasma on the surface
of a target. The spectrum of light produced by this reaction can be used to identify the elemental
composition of the target. In our work, data is fed through a Bayesian CNN to identify features which
contribute to a certain elemental composition with added (e.g., %SiO2) uncertainty quantification.

of all chemical elements, including trace elements and those that might be hazardous to humans;
recognize ice and minerals with water molecules in their crystal structures; measure the depth and
composition of weathering rinds on rocks; and provide visual assistance during drilling of rock
cores [5, 6].

ChemCam utilizes Laser-Induced Breakdown Spectroscopy (LIBS) which is a rapid chemical analysis
technology that uses a laser pulse to create a micro-plasma on the sample surface called laser ablation
as visualized in Figure 1. When a laser pulse ends, the plasma cools, causing electrons in atoms
and ions to return to ground states which emit light with distinct spectral peaks. This emitted light
is captured and analyzed using an ICCD/spectrograph detector module for LIBS spectral analysis
across three spectral ranges: ultra-violet, violet, visible near-infrared. Classical statistical models
such as linear models or random forest models have been used to quantify the oxide weight percent
in samples [7, 8, 9], but recent works have explored NNs as an alternative [10, 11, 12].

CNNs effectively capture spatially correlated information and local patterns in data, making them
well-suited for complex tasks such as spectral data analysis. Another motivation for using NN
techniques over traditional linear techniques are matrix effects, in which interactions between distinct
elements in the sample produce nonlinear spectral effects, complicating quantification [13]. While
previous studies [10, 11, 12] have utilized NNs for ChemCam spectral data analysis, our approach
extends this by integrating a Bayesian framework, which retains the strengths of CNNs in capturing
spatial correlations and matrix effects, while also providing uncertainty quantification for a more
comprehensive analysis.

2 Methodology

For our experiments, we employ a Bayesian Convolutional Neural Network (BCNN), where weights
are treated as random variables sampled from a probability distribution. Since exact inference of the
posterior distribution of the weights given the data is intractable due to the high dimensionality and
complexity of weight space, we approximate the posterior using VI. To formalize this approach, we
first define the likelihood function as follows:

p(D | w) =

N∏
i=1

p(yi | xi,w),

where D = {(xi, yi)}Ni=1 represents the dataset with inputs xi and corresponding outputs yi, and w
denotes the weights of the NN. The likelihood models the probability of observing the data given the
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network parameters w. To incorporate prior beliefs about the model parameters, we define a prior
distribution p(w). In this work, we use an independent Gaussian prior. The posterior distribution is
then proportional to the product of the likelihood and the prior:

p(w | D) ∝ p(D | w)p(w).

The posterior captures our updated beliefs about the weights after observing the data. However, due
to the high dimensionality and non-linearity of neural networks, this posterior is generally intractable.

To approximate the posterior, we employ VI by introducing a variational distribution q(w | θ)
parameterized by θ. The goal is to minimize the Kullback-Leibler (KL) divergence between the
variational distribution and the true posterior:

KL(q(w | θ) ∥ p(w | D)).

This minimization allows us to approximate the posterior distribution with a tractable distribution
q(w | θ), which we assume to be a independent and identically distributed Gaussian N(wj |µj , σ

2
j ).

The variance σ2
j expresses an uncertainty estimate for one NN parameter wj . For BCNNs, we sample

from the variational posterior using the Local Reparameterization Trick [4], which reparameterizes
the Bayes By Backprop equation [1] to sample from activations directly, decreasing the variance of
the estimator [14].

3 Experimental Settings

We implemented a Bayesian 5-layer, 1-dimensional CNN with batch normalization and ReLU
activation following each convolutional layer. ReLU activations introduce sparsity, and sharper
gradients help facilitate more efficient exploration of the posterior weight space. The final layer is a
fully connected linear layer which outputs a single oxide prediction. A kernel size of 50 was chosen to
capture a broad view of spectral features, which typically span across 5606 or more channels, unlike
CNN kernels for images, where smaller kernel sizes are often sufficient. We selected a prior with zero
mean and 0.01 variance, reflecting a preference for small weights, which encourages sparsity and acts
similarly to ℓ2 regularization. We also tested wider prior variances (0.1, 2) to see how performance
and coverage differs. A smaller prior avoids certain pathologies of wide priors that require arbitrary
scaling of the KL divergence term (as in β VAEs). We compare the BCNN to a non-Bayesian CNN
with the same architecture, as well as to a deep ensemble of the CNN (eCNN), and to a non-Bayesian
fully-connected NN.

ChemCam calibration data is available on the NASA Planetary Data System repository https:
//pds.nasa.gov/. For each target (584), there are different locations (5) where separate laser
ablations or shots on the material occur (50), resulting in a set of photon intensities across spectral
channels (5606). Targets with missing oxide compositions were removed and the dataset was reduced
to train on single shot observations. Spectra were then normalized with respect to each spectral
region: ultraviolet (UV, 246.635–338.457 nm), violet (VIO, 382.13–473.184 nm), and visible and
near-infrared (VNIR, 492.427–849.0 nm). This results in 401 final targets with 320 targets held out
for training and 81 targets held out for testing examples. We use a single shot observation from each
location resulting in 2005 total spectra.

4 Results and Discussion

We benchmark the performance of five distinct modeling approaches—Partial Least Squares (PLS),
fully-connected Neural Network (NN), Convolutional Neural Network (CNN), Bayesian Convo-
lutional Neural Network (BCNN) and Ensemble CNN (eCNN)—using Root Mean Squared Error
(RMSE) as the primary evaluation metric. PLS is considered a benchmark as it is a common approach
used on LIBS data [8].

Table 1 shows that the CNN and eCNN generally perform the best in terms of test RMSE, out-
performing the benchmark PLS model and under most cases, the NN. We speculate that the NN
performs better than the CNN and eCNN for Al, Ca, Na, and K oxides because the spatial correlation
assumptions encoded in the receptive field may introduce biases that affect predictive performance.
The BCNN generally performs slightly worse in terms of RMSE, though we gain uncertainty quan-
tification capabilities. In contrast, the ensemble CNN also provides uncertainty estimates, but these
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Table 1: Comparison of RMSE for oxide composition predictions across different predictive models,
with the best result highlighted in bold.

Oxide PLS NN CNN BCNN eCNN

SiO2 5.8523 4.5251 4.4327 4.4760 4.4408
TiO2 0.6449 0.5123 0.49851 0.6489 0.4117
Al2O3 2.93 2.3593 3.1097 2.4554 2.5258
FeOT 2.9720 1.8230 1.6832 1.7079 1.8906
MnO 0.2769 0.4137 0.0812 0.4083 0.7752
MgO 1.2173 2.4293 0.7340 1.9163 1.4373
CaO 1.9585 1.4920 1.9157 1.5625 1.8153
Na2O 1.5810 0.7114 1.6054 1.6391 1.2461
K2O 1.7467 0.7930 1.5720 1.3154 1.3924

Figure 2: Predictions vs true values for Mg0 and SiO2 with 95% credible intervals (Prior = 0.1)

are not inherently probabilistic, as the method relies on aggregating predictions from multiple mod-
els rather than explicitly modeling uncertainty in a probabilistic framework. We note that varied
performance across oxides has been noted in previous works (e.g., [8, 9]), influenced both by very
different measured ranges for each oxide and different spectral complexity corresponding to different
elements.

The limitations of deterministic models, as discussed in [9], highlight a need for a robust approach
for uncertainty estimation in LIBS composition prediction. The composition of a given oxide
can vary greatly between targets, and deterministic models are limited in their ability to quantify
this difference. Furthermore, accurately identifying the possible range of oxide values feeds into
mineralogical interpretation.

The BCNN performed best in terms of RMSE with smaller priors, but resulted in more constrained
uncertainty, as shown in Figure 3. Wider priors, on the other hand, improved coverage by allowing for
more flexible predictions and accounting for a broader range of possible outcomes, which also lead to
lower RMSE. Figure 2 compares BCNN predictions with their true values, along with 95% credible
intervals across a subset of test examples (where apparent clusters in the true values correspond to
the five measured locations per target). We evaluate the credible intervals with respect to coverage
(the percent of intervals that cover the true values). While coverage is near the nominal 95% level for
some oxides (e.g., MgO in Figure 2), coverage is not always consistent, especially in oxides with
higher intrinsic variability (e.g., SiO2) showing the models limitations to approximate the posterior
distribution.

We also observed poor predictive performance and coverage for TiO2 (Figure 3). In this instance, a
small number of targets exhibit exceptionally high TiO2 concentrations—over 45%—while most
other targets contain less than 1% TiO2. Poorer performance for TiO2 suggests that our model
performance is sensitive to high variability in sample distributions. We evaluated an eCNN for TiO2
which improved accuracy and coverage of predictions in our preliminary results which suggest they
are reasonable for capturing model uncertainty while retaining high predictive accuracy (Figure 3).
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Future work should focus on refining the model or employing additional strategies, such as data
augmentation [15] [16] to improve coverage consistency across all oxides.

Figure 3: Predictions vs true values for TiO2 with 95% coverage intervals for (1) BCNN and (2)
eCNN (Prior = 0.01)

5 Conclusion

We propose that BCNNs are particularly effective for spectral data analysis due to their principled
capability for uncertainty quantification. We demonstrate our approach on a regression prediction
task: prediction of oxide compositions from LIBS data for the ChemCam instrument on the Mars
Curiosity rover. We show that BCNN (i) outperforms a commonly-used PLS model, (ii) remains
competitive with the fully-connected NN and deterministic CNNs, and (iii) can effectively quantify
predictive uncertainty in oxide compositions, though we leave to future work the task of identifying
shortcomings of the model for some of the oxides. This work not only enhances confidence with
complex models in analyzing highly variable spectroscopy data but also lays the groundwork for
future research into broader applications of laser-induced breakdown spectroscopy.

6 Future Work

As part of our ongoing research, we are currently exploring several avenues to further optimize our
performance in uncertainty quantification. We are also exploring the application of VI in modeling
the posterior of activation space rather than weight space. Finally, we are actively researching
explainability methods for probabilistic deep networks, with the aim of increasing model transparency
and interpretability, which will be critical for collaborators wanting to use deep learning in ChemCam
research.
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