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Abstract

Symbolic regression aims to uncover mathematical expressions that fit data, tra-
ditionally using evolutionary algorithms like genetic programming. However,
these methods often struggle with noise, impacting robustness. We propose two
hybrid approaches integrating genetic programming with transformer models to
enhance performance. The first method, partially initialized genetic programming
(PIGP), partially initializes solutions from a pre-trained transformer. The sec-
ond approach employs symbolic Direct Preference Optimization (DPO), where
a pre-trained transformer generates candidate solutions via beam search, which
are then refined by genetic programming. Preference pairs from the top solutions
fine-tune the transformer to improve R2 scores. Our experiments show that these
transformer-based methods significantly enhance robustness in noise and perform
comparably or better than traditional genetic programming methods, such as e-
lexicase selection, in noise-free conditions. These findings highlight the potential
of transformer-enhanced symbolic regression for improved model robustness and
accuracy.

1 Introduction

Symbolic regression aims to discover analytical expressions that describe relationships in data.
Traditional approaches, such as genetic programming (GP)[1], are popular for this task due to their
ability to evolve complex expressions without requiring explicit function forms. However, GP
methods are sensitive to noise and can struggle with generalization across different datasets. Recently,
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transformer-based models[2] have shown potential in symbolic domains[3, 4, 5, 6], enabling the
combination of evolutionary methods with data-driven techniques to enhance symbolic regression.

In this work, we propose two approaches that integrate transformer models with genetic programming
(GP) to tackle the challenges of noise and robustness in symbolic regression. We used a transformer
architecture inspired by [4], using the P1000 method [7] to tokenize floating-point numbers. The
equations are represented in prefix notation, and the transformer is pre-trained on batches of 1000
expressions. Our first approach, Partially Initialized Genetic Programming (PIGP), uses the pre-
trained transformer to partially initialize the GP population. Solutions are generated by beam search,
with the data set divided into chunks following insights from e-lexicase selection [8]. Post-processing
ensures that the expressions adhere to symbolic grammar rules.The second approach, Symbolic Direct
Preference Optimization (SymbolicDPO), iteratively refines the transformer-generated equations
through GP and preference-based learning. Preference pairs are generated from top performing
samples, and DPO [9] fine-tunes the transformer iteratively. Building upon the method in [10],
which explores reinforcement learning combined with other techniques, it is well-established that
reinforcement learning often requires careful parameter tuning to achieve optimal results in symbolic
regression tasks, as noted in [11, 12, 13] and further supported by [14]. Our experiments demonstrate
that these transformer-guided approaches are robust to noise while performing similarly to traditional
GP methods in noise-free scenarios.

2 Background and Related Work

Symbolic regression has traditionally been dominated by GP, as introduced by Koza [15], but GP-
based approaches often struggle with noisy datasets. The sensitivity of GP to noise can lead to
overfitting, reducing the model’s interpretability [16]. To mitigate this, e-lexicase selection has
emerged as a noise-resistant selection method by evaluating solutions in diverse data subsets, im-
proving the resilience of GP to noise. Transformer models have recently been applied to symbolic
regression tasks.[4] showed that transformers can effectively generate symbolic expressions, out-
performing traditional GP in noiseless datasets. The P1000 tokenization method [7], which divides
floating-point numbers into signs, mantissa, and exponents, enhances the transformer’s ability to
represent numerical data. In our work, we adopt this method for numerical tokenization and prefix
notation for equation representation, allowing transformers to better capture mathematical struc-
tures.Direct Preference Optimization (DPO) [9] has proven effective for improving neural-symbolic
models by refining models using preference pairs. Furthermore, Mundhenk et al. [10] demonstrated
that neural networks can guide the seeding of the GP population, providing a foundation for the
integration of evolutionary methods with deep learning. Building on these concepts, we combine
transformer-guided initialization with genetic programming , iterating between the two for improved
performance and robustness, especially in noisy conditions.

3 Methodology

3.1 Transformer Pretraining

We pretrain a transformer model on symbolic equations following Kamienny et al. [4], using P1000
tokenization [7] to handle floating point numbers and prefix notation for clarity. The data set is
segmented into chunks of 1000 expressions, inspired by the selection of e-lexicase [8], to reveal
diverse patterns and build a robust foundation for the generation of transformer-based symbolic
expressions.

3.2 Partially Initiallized Genetic Programming (PIGP)

PIGP integrates transformer-generated expressions into genetic programming (GP) to achieve a
balance between exploitation and exploration, where exploitation leverages transformer-generated
solutions to guide the search toward promising regions, and exploration utilizes GP to investigate
diverse possibilities within the search space. We use beam search with the pre-trained transformer
to generate candidate expressions and partially initialize the GP population, maintaining diversity
with random initialization. We apply grammatical constraints to ensure valid expressions, enforcing
rules such as having binary operators followed by two operands. This post-processing step helps to
maintain the quality of the solution and compliance with the symbolic grammar.
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3.3 Symbolic Direct Preference Optimization (SymbolicDPO)

SymbolicDPO refines transformer-generated expressions with GP, using beam search to propose
candidates and continuously integrating these into GP for exploration. The best performing genetic
programming (GP) solutions are used to construct preference pairs, which are then used to fine-tune
the transformer using Direct Preference Optimization (DPO) [9]. When generating these preference
pairs, we adopt the strategy of selecting the top m1 solutions based on lower R2 scores, designating
them as preferred over the subsequent m2 solutions ranked after m1. Typically, m2 is chosen to
be smaller than m1 to mitigate the risk that suboptimal expressions are mistakenly preferred. This
process adjusts the transformer based on relative rankings, improving its expression generation
over iterations. DPO is applied iteratively with an increasing beta parameter throughout each cycle,
increasing the transformer sensitivity to performance differences and improving expression quality
over time. Both PIGP and SymbolicDPO enhance robustness in the presence of noise and maintain
search space diversity. PIGP’s random initialization and SymbolicDPO’s iterative refinement improve
performance compared to traditional GP, particularly in noisy conditions, while achieving competitive
results in noise-free settings.

Test Eqns Actual Equation GP PIGP SymbolicDPO
I.6.2a exp(-theta2/2)/sqrt(2*pi) 0.999995 0.999999 0.999993
I.12.5 q2*Ef 1.0 1.0 1.0
I.18.14 m*r*v*sin(theta) 0.999984 0.999982 1.0
I.39.1 3/2*pr*V 0.999999 0.999999 1.0
I.43.16 mu_drift*q*Volt/d 0.999988 0.999997 1.0
I.43.31 mob*kb*T 0.999992 0.999995 1.0
II.4.23 q/(4*pi*epsilon*r) 0.999955 0.999967 0.999954
II.21.32 q/(4*pi*epsilon*r*(1-v/c)) 0.999983 0.999949 0.999945
II.35.21 n_rho*mom*tanh(mom*B/(kb*T)) 0.999994 0.999986 0.999986
II.38.3 Y*A*x/d 0.999997 0.999969 1.0
Table 1: Table 1: Comparison of GP, PIGP, and SymbolicDPO performance (without noise).

Test Eqns GP (Noise = 0.1*std) PIGP (Noise = 0.1*std) SymbolicDPO (Noise = 0.1*std)
I.6.2a 0.999998 0.999997 0.999994
I.12.5 1.0 1.0 1.0
I.18.14 0.999966 0.999993 1.0
I.39.1 0.999998 0.999997 0.999996
I.43.16 0.999996 0.999989 1.0
I.43.31 0.999992 1.0 1.0
II.4.23 0.999923 0.999946 0.999954
II.21.32 0.999982 0.999984 0.999955
II.35.21 0.999974 0.999986 0.999990
II.38.3 0.999990 0.999987 1.0

Table 2: Table 2: Performance comparison under noise (0.1*std) across GP, PIGP, and SymbolicDPO.

4 Experiments and Dataset

4.1 Dataset

The AI Feynman dataset [17] is used for evaluating the proposed methods. This dataset contains
100 equations representing various physical phenomena. We use 80 equations for pretraining the
transformer model, 10 for validation, and 10 for testing. The dataset provides a challenging and diverse
set of equations, ideal for testing symbolic regression techniques.During pre-training, equations are
tokenized using the P1000 method [7], which breaks down floating-point numbers into sign, mantissa,
and exponent components. Each equation is divided into chunks of 1000 points for tokenization and
representation in prefix notation. This ensures consistency and improves the efficiency of training.
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Figure 1: Comparison between the three ap-
proaches in terms of R2score (scaled) without
noise.

Figure 2: Comparison between the three ap-
proaches in terms of R2 score (scaled) with
target noise = 0.1*std of target.

4.2 Experimental Setup

We conduct two main experiments to evaluate our proposed methods, Partially Initialized Genetic
Programming (PIGP) and Symbolic Direct Preference Optimization (SymbolicDPO). Both methods
are evaluated on their ability to recover original equations, with additional experiments on noisy
data to assess robustness. For all experiments, we use the R2 score to evaluate the accuracy of the
generated symbolic expressions. In the noise-robustness experiments, Gaussian noise with a standard
deviation of 0.1 is added to the target variables, allowing us to compare how the methods handle
noisy data against traditional genetic programming (GP) with e-lexicase selection [8].

5 Results and Discussion

5.1 Results

The results of the experiments are presented in Table 1 (noise-free) and Table 2 (noisy data).

In noise-free conditions, both PIGP and SymbolicDPO perform similarly to traditional GP, with
R2 scores close to 1.0, indicating accurate symbolic expression generation and recovery of original
equations. In the presence of Gaussian noise, transformer-based methods outperform traditional GP,
with PIGP and SymbolicDPO maintaining higher accuracy. SymbolicDPO, in particular, exhibits
the greatest resilience to noise due to its iterative fine-tuning and preference-guided optimization,
demonstrating superior robustness compared to traditional GP based methods.

5.2 Discussion

The experiments underscore the key advantages of integrating transformers with genetic programming
for symbolic regression. In noise-free conditions, both PIGP and SymbolicDPO perform comparable
to traditional GP, maintaining accuracy without degradation. However, in the presence of noise,
the transformer-guided approaches demonstrate notable improvements in robustness. The iterative
refinement process in SymbolicDPO, driven by Direct Preference Optimization (DPO), enables it to
adapt more effectively to noisy data, progressively enhancing predictions with each iteration. PIGP’s
partial initialization strikes a balance between the transformer’s guidance and GP’s exploratory nature,
resulting in better generalization across diverse datasets. Although the R2 scores are uniformly high, it
is important to note that even small variations in these scores can correspond to significant differences
in the generated equations. In fact, if we were to examine the mean squared error (MSE), we would
observe a similar trend, as MSE is inversely proportional to R2. However, the large variation in MSE
values across different equations makes direct comparison difficult.Overall, these findings suggest
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that transformer-enhanced methods are not only robust but also highly adaptable, offering a promising
approach for symbolic regression, particularly in challenging real-world scenarios where noise is
prevalent.
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