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Abstract

Accurate representation of the multiscale features in spatiotemporal systems using
vision transformer (ViT) architectures requires extremely long, computationally
prohibitive token sequences. To address this issue, we propose an adaptive tok-
enization scheme which dynamically adjusts the token sizes based on local features.
Moreover, we introduce spatiotemporal attention schemes built on axial attention,
decoupling full attention into attention in the axial dimensions. We assess the
performance of the proposed multiscale adaptive model, MATEY, in a sequence of
experiments. The results show that adaptive tokenization is up to eight times more
cost-efficient. Compared to a full spatiotemporal attention scheme, we find that
decoupled attention requires more training time and larger model sizes to achieve
the same accuracy. Finally, we demonstrate in two fine-tuning tasks featuring
different physics that models pretrained on PDEBench data outperform the ones
trained from scratch, especially in the low data regime with frozen attention.

1 Introduction

Developing foundation models for physical systems is vital for energy generation, earth sciences, and
power and propulsion systems. These models offer faster solutions than physics-based simulations
and can generalize better across multiple systems than single-purpose AI approaches. However, their
application to physical systems, often characterized by multiple sub-processes at different scales, is
still in the early stages. The high-resolution solutions of such multiscale multiphysics systems would
entail extremely long token sequences, challenging even for advanced supercomputers with existing
foundation model algorithms.

Efficient representation of multiscale features in high-resolution inputs has been an active research
topic in computer vision. Three broad approaches can be characterized. First, multiscale models
like Swin Transformer [Liu+21] and MViTv2 [Li+22] introduce multiple stages with decreasing
resolution and increasing feature dimension for efficient hierarchical representations. Second, compu-
tational techniques have been developed which facilitate training on long sequences (e.g., sequence
parallelism across GPUs [Jac+23]) or reduce the effective sequence length in the attention kernel
(e.g., decomposing attention along axial directions [Ho+19]). Third, the actual sequence length can
be directly shortened by pruning and merging tokens ([Hau+23; Men+22; Yin+22; BH23]), though
this strategy may lead to critical information loss [Liu+24].

These techniques have recently been adopted in sciML for physical systems. For example, the
atmosphere foundation model Aurora [Bod+24] uses Swin Transformer, while axial attention is
applied by MPP [McC+23]. Despite the progress, computational constraints remain a bottleneck, as
existing approaches do not yet handle high-fidelity solutions of applications such as computational
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fluid dynamics, in which input sequences can easily exceed billions of tokens. More efficient
algorithms are needed in foundation models for multiscale multiphysics systems.

In this work, we develop a multiscale adaptive foundation model, MATEY (see Fig. 2), that provides
two key algorithmic contributions to address the challenges posed by spatiotemporal physical sys-
tems. First, inspired by the adaptive mesh refinement (AMR) technique, we introduce an adaptive
tokenization method that dynamically adjusts patch sizes across the system based on local features,
which provides up to an 8× reduction in attention cost for similar or higher accuracy. Second, we
present a set of spatiotemporal attention schemes based on the axial attention [Ho+19] that differ in
their decomposition of long spatiotemporal sequences and identify the cost in time-to-accuracy for
axial attention. Finally, we assess the fine-tuning performance of models pretrained on PDEBench
[Tak+22] in two out-of-distribution settings, colliding thermals and magnetohydrodynamics (MHD),
and observe the pretrained models outperforming random initialized ones.

2 Related work

Scientific foundation models Several research directions have been explored for building founda-
tion models for physical systems, including multiple physics pretraining [McC+23] with PDEBench
data, input augmentation with PDE system configurations [Han+24], robust pretraining schemes
[Hao+24], fine-tuning effectiveness investigations [Sub+24], and data-efficient multiscale ViT ar-
chitectures [Her+24]. While these works made remarkable progress, they do not address the issue
of token sequence length, which becomes a computation bottleneck when applying ViTs to high
dimension or high resolution physical data.

Multiscale ViTs While most multiscale ViTs achieve hierarchical representations via multi-stage
attention blocks at different resolutions (e.g., MViTv2 [Li+22] and Swin Transformer [Liu+21]),
there are a few focusing on tokenization schemes (e.g., [Yin+22; Fan+24; Zha+24; Hav+23]). One
close to our work is the single-stage MSViT with dynamic mixed-scale tokenization [Hav+23], which
leverages a learnable gating NN for token refinement controlled via a gate sparsity hyperparameter. It
requires careful designing of gate loss functions and adaptive trimming to handle the high overhead
cost, which in return hurts gate training. In contrast, our method adaptively adjusts the patch scales
directly based on local feature scales, which is simpler and remains effective.

Axial attentions The quadratic scaling nature of attention makes it computationally prohibitive for
extremely long token sequences in multidimensional systems. To address this challenge, [Ho+19]
proposed the axial attention, which decomposes the full attention into a sequence of attention
operations along each axis. It reduces the attention cost from O(N2d) to O(Nd+1), for a given
d-dimensional system with Nd = N× . . .×N tokens. ViViT [Arn+21] factorized the spatiotemporal
attention into spatial- and temporal-dimensions for video classification. [McC+23] applied the axial
attention in the Axial ViT (AViT) for spatiotemporal solutions of physical systems. While these
spatiotemporal attention schemes can reduce the sequence length and hence the attention cost, their
impact on accuracy in physical systems is unclear.

3 Our method

We develop foundation models to predict spatiotemporal solutions of multiple physical systems
(Fig. 2). We consider learning a function ut+tlead = fw(ut−T+1, . . . ,ut; tlead) in a supervised setting
to predict the solution at a lead time tlead given a time sequence of T solutions [ut−T+1, . . . ,ut]
with ui ∈ RH×W×C . The spatial resolution H × W and the size of physical variables C vary
between datasets used in pretraining. For a patch size of [pt, px, py], the solution is converted to
N = nt× npx× npy tokens with nt = T/pt, npx = H/px, and npy = W/py. Unless otherwise
specified, we set pt = 1.

Adaptive tokenization Smaller patch sizes are preferred for better representation accuracy, as
ViTs can capture the long-range correlations between patches well but lack inductive biases within
patches. However, constant patch sizes that are small enough for good accuracy in physical systems,
which often feature multiple scales and exhibit strong spatiotemporal inhomogeneities, result in
impractically long token sequence lengths. To address this issue, we propose an adaptive ViT that
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Figure 1: Adaptive tokenization based on local feature variances inside each patch.

dynamically adjusts the tokenization patch sizes according to local physical features. As shown in
Fig. 1, to maximize expressiveness, we start with coarse patches, identify the most complex patches
in each sample based on a simple metric (i.e., variance of the local features), and further refine
the selected patches. Adaptive patch size leads to patches at varying length across samples, which
are handled with a padding mask. Patch position and patch area bias are represented following the
embedding method in [Bod+24].
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Figure 2: MATEY: multiscale adaptive foundation models
for spatiotemporal physical systems.

AViT, SViT, and ViT In a stan-
dard ViT, the attention block learns
relationships across the full spa-
tiotemporal patch sequence (Z0 =
[z0

1, . . . ,z
0
N ] with the length N =

nt · nx · ny and z0
i ∈ RCemb ). In the

simplest setting, the encoder consists
of multihead self attention (MHSA)
and feed forward multi-layer percep-
tron (MLP),

Z̃
ℓ
= MHSA(Zℓ−1) +Zℓ−1,

Zℓ = MLP(Z̃
ℓ
) + Z̃

ℓ
,

with ℓ = 1, . . . , L for L attention
blocks. The patch sequence length
N = nt · nx · ny in multiscale phys-
ical systems is often extremely large,
leading to prohibitively high atten-
tion costs (O(N2)). To reduce the
spatiotemporal attention cost, various
factorized attention mechanisms have
been proposed, such as AViT [Ho+19;
McC+23] and a spatio-temporal decoupled attention [Arn+21], referred to as SViT here. SViT
decouples the full attention into time-attention and space-attention blocks cascaded sequentially, as in

Time sequences: Zℓ−1
i =

[
zℓ−1
(i−1)·nt+1, z

ℓ−1
(i−1)·nt+2, . . . ,z

ℓ−1
(i−1)·nt+nt

]
, i = 1, . . . , nx · ny

Attention in time: Ẑ
ℓ

i = MHSAtime

(
Zℓ−1

i

)
+Zℓ−1

i , i = 1, . . . , nx · ny

Space sequences: ̂̂
Z

ℓ

t =
[
ẑℓ
t, ẑ

ℓ
t+nt, . . . , ẑ

ℓ
t+nt·(nx·ny−1)

]
, t = 1, . . . , nt,

Attention in space: Z̃
ℓ

t = MHSAspace

(̂̂
Z

ℓ

t

)
+

̂̂
Z

ℓ

t, t = 1, . . . , nt,

Feed forward ML: Zℓ = MLP
(
Z̃

ℓ
)
+ Z̃

ℓ
, ℓ = 1, . . . , L,

which reduces the attention cost to npx·npy·O(nt2)+nt·O((npx·npy)2). AViT further decomposes
the space-attention in SViT into two axial directions, achieving a cost of npx · npy · O(nt2) + nt ·
npy · O(npx2) + nt · npx · O(npy2). Due to decoupling, AViT and SViT ignore the spatiotemporal
correlations while introducing additional attention blocks which increase the model size. The impact
of decoupled attentions on learning efficiency remains unclear. We implement AViT, SViT, and ViT
in MATEY and evaluate their performance.
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Figure 3: Learning efficiency of three spatiotemporal attention schemes during pretraining in terms
of final predictive error and training time cost.

Pretraining and fine-tuning We pretrain the models on five basic 2D systems from PDEBench:
incompressible flows, compressible flows, turbulent flows, reaction-diffusion systems, and shallow
water equations. We consider two fine-tuning cases: 1) colliding thermals between a cold bubble
colliding with a warm bubble from MiniWeather simulations [Nor20] and 2) lid-driven cavity MHD
flows [Fam+23]. Training was performed on the Frontier supercomputer at the Oak Ridge Leadership
Computing facility, using 92 nodes for pretraining and 4 nodes for fine-tuning.

4 Experiments

We design three experiments to evaluate: 1) the performance of three spatiotemporal attention
schemes, AViT, SViT, and ViT, 2) the impact of adaptive tokenization, and 3) the effectiveness of
pretrained models on two fine-tuning tasks that feature physics different from the pretraining data.

4.1 Spatiotemporal attention schemes

Fig. 3 compares the training losses, defined as normalized root-mean-square error (NRMSE), against
the number of model parameters and training time for the AViT (red), SViT (green), and ViT (blue)
schemes. We evaluate these schemes with three model sizes: Tiny (Ti), Small (S), and Base (B) with
3, 6, and 12 heads and hidden dimensions of 192, 384, and 768, respectively [Tou+22]. In general,
we find that SViTs and ViTs are more computationally- and representation-efficient than AViTs, in
that they achieve lower losses with the same training time and smaller model sizes.

4.2 Adaptive tokenization
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Figure 4: NRMSE loss for attention schemes
with adaptive tokenization (ours_adap) and con-
stant patch sizes. Cost is estimated from sequence
length. Patch size/resolution represents grid of pix-
els per patch.

In Fig. 4, we evaluate our adaptive tokenization
method coupled with AViT, SViT, and ViT, to-
gether with three patch resolutions: ps=8 × 8,
16 × 16, and 32 × 32. For the same attention
scheme, as expected, increasing resolution leads
to lower error but also substantially increases
the training cost. Our adaptive scheme, which
starts with 32× 32 and locally refines to 8× 8
on selected patches, achieves comparable or bet-
ter accuracy than uniform 16 × 16 patches de-
spite reduced training costs. The cost reduction
depends significantly on the spatiotemporal at-
tention, being almost 8× more efficient than
constant patch sizes for ViT.

4.3 Effectiveness of pretraining in colliding
thermals and MHD fine-tuning tasks

By comparing the test errors after fine-tuning
between pretrained and randomly initialized models, we aim to assess four questions:
1. Does pretraining improve accuracy with limited data?
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2. Is pretraining still useful when the downstream tasks have a distinct set of physical variables?
3. How does limited fine-tuning (freezing attention and training the preprocessor/postprocessor only

[‘PREPOST’]) compare to full fine-tuning [‘ALL’]?
4. How does fine-tuning data size affect convergence?
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Figure 5: NRMSE loss for test set at dif-
ferent training data sizes in fine-tuning
of colliding thermals.

For the thermal collision dataset, Fig. 5 compares the test
loss with PREPOST using pretrained (i.e., ‘*_pretrain’)
and randomly initialized models (i.e., ‘*_INIT’) for dif-
ferent training data sizes ranging from one set of thermal
collision time-trajectories to 96 sets of trajectories. Pre-
trained models achieve significantly lower error than start-
ing from scratch with randomly initialized weights. With
increasing fine-tuning data, test errors of pretrained and
randomly initialized models converge to different values.
The lower converged error from pretrained models sug-
gests attention blocks clearly learn transferable knowledge
from pretraining.
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against training data sizes in fine-tuning
of liquid metal MHD.

Fig. 6 shows the final test NRMSE errors after fine-tuning
against data sizes, from pretrained models (‘PREPOST’,
‘ALL’) and from scratch (‘*_INIT’) for liquid metal MHD
in lid-driven cavity flows. Pretrained models achieve lower
fine-tuning errors, similar to colliding thermals. Regarding
the two fine-tuning strategies, the advantage of pretrain-
ing vanishes with increasing data for ‘ALL’ but persists
for ‘PREPOST’. This is a result of model expressibility,
training data size, and the similarity between training and
testing tasks. Models with limited expressibility, such as
‘PREPOST*’ with its attention blocks frozen, consistently
show an accuracy gap, even with more training data, as
they cannot fully represent the data complexity. In con-
trast, highly expressive models (i.e., ‘ALL*’ with all parameters trainable) can capture all training
data information when trained on limited data but often show high test errors; as more training data is
provided, they generalize better and lead to an improved test error. In our fine-tuning, the randomly
initialized models perform well in testing even with a single data configuration (equivalently, 1989
samples), likely due to the similarity between training and testing tasks. Future work will explore
more challenging scenarios.

5 Conclusions

In this paper, we make three contributions that will advance the development of foundation models for
multiscale physical systems. First, we find that while some data efficiency is lost in a fully decoupled
spatiotemporal attention scheme such as AViT, SViT provides an intriguing balance of computational
and data efficiency versus the standard ViT approach. Yet using SViT alone does not sufficiently
address the computational challenges associated with attention for high spatial resolutions. Second,
we instead suggest that our adaptive tokenization scheme provides a promising approach for working
with high resolution data. Adaptivity has the potential to be sufficiently flexible and expressive to
represent the dynamic and sparse nature of the multiscale features in physical data. Third, we suggest
an alternative path to evaluate foundation models for multiscale physical systems that focuses on fine-
tuning problems involving out-of-distribution physics governed by different equations with distinct
sets of physical variables. In two such settings, colliding thermals and magnetohydrodynamics, we
find that while pretraining does provide an advantage, its impact is much more muted compared to
fine-tuning on the same set of variables, suggesting that additional effort is required to obtain truly
foundational models in this space.
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