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Abstract

Squared amplitudes of particle collision interactions can be used to theoretically
predict cross-sections in order to verify results of particle physics experiments. The
calculation of amplitudes for a particle process is trivial, however, mapping those
to a simplified squared amplitude expression can be very computationally expen-
sive. Previous work has demonstrated the ability to map amplitudes to squared
amplitudes substantially faster and with high accuracy using vanilla transformer
models for simple processes. In this paper, we further explore the application of
S-KANformer (transformer models infused with SineKAN layers). We present em-
pirical evidence demonstrating that our model significantly outperforms the vanilla
transformer in most tasks and shows greater robustness to varying factors such as
batch size, dataset size, and sequence length. We also discuss some limitations
and potential future directions of this work. Although more comprehensive studies
need to be undertaken, this work shows promising directions for applications of
S-KANformer, especially in domains involving symbolic calculations.

1 Introduction

In the realm of particle physics, particle interactions are commonly modelled theoretically using
methods which aim to predict likelihoods of certain outcomes of those interactions. These likelihoods
are generally modelled as cross-sections, for example, as likelihood of an interaction resulting in a
certain type of particle passing through a surface area of a detector. Two key steps in determining
these cross-sections are determining the amplitude of a wave function associated with the interaction
and determining the squared amplitude from the amplitude.

Calculations of these squared amplitudes by hand are very error prone and inefficient. Also, the
automated software available for such calculations (Feyncalc, CompHEP or MARTY) Shtabovenko
(2024); Boos et al. (2004); Uhlrich et al. (2021) are time consuming.The proposed solution is to
reframe the problem into a seq-to-seq learning task mainly using transformer-based models Vaswani
(2017). The goal is to devise a system capable of generating accurate symbolic representation of the
squared amplitudes conditional on the given input i.e. the symbolic amplitude equations or Feynman-
diagrams. Inference time of these models will be orders of time lesser than existing calculation
methods. In earlier works, this problem was tackled using vanilla transformers Alnuqaydan et al.
(2023). In this paper, we extend the work further with the help of S-KANformer, our novel transformer
model infused with Kolmogorov-Arnold Networks.
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2 Model description

2.1 SineKAN

Multi-layer perceptrons (MLPs) are the most crucial component of current neural networks. They
are based on the principle of the Universal Approximation Theorem Hornik et al. (1989). In theory,
a sufficiently large neural network can approximate any arbitrary function to a desired degree of
accuracy. Recent works suggest a promising alternative to MLPs, namely Kolmogorov-Arnold
Networks (KANs) Liu et al. (2024). Unlike traditional MLPs, which have fixed activation functions
on the nodes (neurons), KANs place learnable activation functions on the edges of the computation
graph. KANs are inspired by the Kolmogorov-Arnold Representation Theorem. The univariate
functions used in the original KAN implementation were B-splines; however, they pose major
computational challenges with increasing dimensionality. Some recent works suggest the use of
alternative univariate functions other than B-splines Aghaei (2024a,b); SS (2024); Xu et al. (2024);
Bozorgasl and Chen (2024); Ta (2024), some of which are more efficient. For S-KANformer, we
explicitly make use of SineKAN Reinhardt and Gleyzer (2024), which is orders of magnitude faster
than the original KAN implementation while maintaining similar performance.

Unlike the original B-spline KAN, SineKAN is based on sine functions. SineKAN architecture
has shown promising results in satisfying universal approximation theorem and has proven to be
numerically stable across multiple layers and different grid sizes. Mathematically, each layer can be
expressed as:

yi =
∑
j

∑
k

(sin(xj · ωk + ϕjk) ·Aijk) + bi (1)

Where yi are the layer output features, xj are the layer input features, ϕjk is a phase shift over the
grid and input dimensions, ωk is a grid frequency, wijk are the amplitude weights, and bi is a bias
term.

2.2 S-KANformer

The S-KANformer architecture replaces the Feed Forward Network (FFN) at the end of the last
decoder block of the vanilla Transformer. Figure 1 describes the mentioned architecture, where the
left block represents the encoder and the right block represents the final decoder block. Except for
the final decoder block, all decoder blocks have the usual FFN after the cross multi-head attention,
along with a residual connection, which is absent for KAN layers.

Figure 1: S-KANformer block diagram
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2.3 Dataset

Data has been generated using the symbolic computation program MARTY Uhlrich et al. (2021) to
obtain expressions for possible interactions in quantum electrodynamics (QED) mediated by photons,
quantum chromodynamics (QCD) mediated by gluons, and electroweak theory (EW) mediated by
W+/− and Z bosons. These processes we will generally describe as "A-to-B" where A is the number
of incoming particles and B is the number of outgoing particles. We will focus in this work on
tree-level processes in which there are no closed loops of propagators in the associated interaction
Feynman diagram. The processes are restricted to 2-to-2 and 2-to-3 tree-level processes. For each
process and numbers of incoming and outgoing particles, we generate an inclusive set of amplitudes
and squared amplitudes. The sequences are expressed using the matrix element formalism, which
employs Dirac/gamma matrices Dirac (1928) and spinor representations. Lorentz and spinor indices
are used to indicate how the matrices and spinors should be contracted Minkowski (1908, 1910).

Generated sequences are tokenized using a custom tokenizer which separates the mathematically
distinct components of the amplitude and squared amplitude expressions such as operations, indices,
scalars, and matrices/tensors. After tokenization, we verify that there are no duplicate amplitude
expressions arising from similar interaction diagrams present in the data which could constitute a data
leakage. Full details of the tokenization can be found in our github repository A.1. For the current
work, models were trained for only amplitude to squared amplitude calculation in QCD (2-to-2), QED
(2-to-2 and 2-to-3) and EW (2-to-3) with max_seq_lens1 of 544, 300, 1202 and 302 respectively.

3 Results & Discussions

After extensive experimentation with both Transformer and S-KANformer models across a variety of
datasets, it was observed that S-KANformer generally outperformed or matched the performance of
Transformers, but never performed worse. For all experiments, a 3-layer encoder-decoder architecture
was employed, with Feed Forward Network (FFN) dimensions set to 4096 for S-KANformer and
8192 for Transformers. In the S-KANformer models, only a single SineKAN layer was utilized, with
a dimension of size 8192. All models were trained to near convergence with a learning rate that
decayed linearly with each epoch. No warm-up phase was used; instead, the norm of the gradients
was clipped to a unit norm in most cases to improve convergence and enhance stability during the
initial phases of training. Models are evaluated on basis of the sequence accuracy of the generated
sequences with the original sequences, only exact match is taken into consideration. Testing is done
on an unseen test set sized around 5 - 10% of the training data for that particular process. Detailed
reports for the all the experiments can be found in our repository A.1. Following tables provide
details about the training results according to the task.

Note: All models have an embedding size of 512, 8 attention heads, and ~60M parameters for
Transformer, and ~65M parameters for S-KANformer. The batch size is written in the form
batch_size_per_GPU X num_of_GPUs.

Table 1: Comparison of Models Across Processes

Process Name Training Samples Model Name Batch Size Seq Acc(%)

QCD 2-2 41K Transformer 64 x 2 89.40
QCD 2-2 41K S-KANformer 64 x 2 91.13
QED 2-2 42K Transformer 64 x 2 99.60
QED 2-2 42K S-KANformer 64 x 2 99.60
EW 2-3 246K Transformer 64 x 2 47.08
EW 2-3 246K S-KANformer 64 x 2 66.57
QED 2-3 192K Transformer 48 x 2 75.35
QED 2-3 192K S-KANformer 48 x 2 95.50

1Maximum Sequence length is the maximum among the source and target sequence length for the particular
dataset.
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4 Conclusions

From the above results, it is evident that S-KANformer performs better than the Transformer in
almost all cases by a significant margin. The design choice of replacing the FFN layer in only the
final decoder block with SineKAN layers was primarily driven by the need to limit the increasing
computational cost associated with swapping additional FFN layers with SineKAN layers. This
approach draws inspiration from design paradigms like CNNs, where convolutional layers act as
feature extractors before an MLP processes features for specific tasks, or NLP models, where only the
final layers of pretrained transformers are adapted for downstream tasks. Additionally, it was revealed
through experiments that additional swaps of FFN layers in decoder blocks as well as encoder blocks
did not improve performance.

It is evident that S-KANformers are a promising avenue to consider, especially in symbolic tasks.
The SineKAN layer used in these models, although faster than the original B-spline implementation,
is still slower than traditional MLPs. This added computation has been mitigated to some extent by
placing the layers only at the head of the transformer, but the concern persists. A S-KANformer with
one SineKAN layer of size 8192 is, on average, 1.2 times slower than a transformer with almost the
same number of parameters as the S-KANformer. Possible future work can include optimizing this
architecture to reduce computations and time with increasing dimensionality. Additionally, more
comprehensive studies are required to establish the efficacy of S-KANformers over Transformers.
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A Appendix / supplemental material

A.1 Repository

The code for S-KANformer, along with additional details regarding the experiments, is available at
the following GitHub repository: github.com/Riteshbhalerao11/GSOC-24.
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