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Abstract

Recently, contrastive learning (CL), a technique most prominently used in natural
language and computer vision, has been used to train informative representation
spaces for galaxy spectra and images in a self-supervised manner. Following this
idea, we implement CL for stars in the Milky Way, for which recent astronomical
surveys have produced a huge amount of heterogeneous data. Specifically, we
investigate Gaia XP coefficients and RVS spectra. Thus, the methods presented in
this work lay the foundation for aggregating the knowledge implicitly contained
in the multimodal data to enable downstream tasks like cross-modal generation or
fused stellar parameter estimation. We find that CL results in a highly structured
representation space that exhibits explicit physical meaning. Using this representa-
tion space to perform cross-modal generation and stellar label regression results in
excellent performance with high-quality generated samples as well as accurate and
precise label predictions.

1 Motivation and Related Work

Over the past few decades, large-scale astronomical surveys of Milky Way stars have proliferated,
including missions like Gaia [13], APOGEE [25], GALAH [7, 8], and LAMOST [38], with upcoming
efforts like 4MOST [10]. Each survey typically develops its own pipeline, requiring post-hoc
calibration to reconcile discrepancies across different data sets [e.g. 30]. This highlights the need
for techniques capable of integrating data from diverse observational setups to maximize scientific
output from heterogeneous datasets. Recently, machine learning (ML) has enabled cross-survey
analysis by harmonizing diverse datasets. For instance, AspGap [23] aligns Gaia XP data with
APOGEE, enabling the use of the APOGEE pipeline on Gaia observations. Similarly, ASTROCLIP
[20] generates low-dimensional vector representations of multi-band images and spectra from the
Dark Energy Spectroscopic Instrument (DESI), effectively mapping objects to shared latent spaces for
cross-modal analysis. Moreover, [21] leverage a Transformer-based model trained on Gaia XP spectra
and APOGEE stellar parameters to facilitate information transfer across different observation sets,
exemplifying the emerging trend of foundation models in astronomy. Recent works in astrophysics
also reflect the growing adoption of multimodal ML methods [37, 17, 14, 24, 34, 1, 28], with
foundation models drawing inspiration from advances in natural language processing and computer
vision [31, 21]. The objective of this work is to explore how deep representation learning can
be applied to multimodal stellar spectra to: (i) generate informative representations from varied
stellar spectra observations, and (ii) evaluate these representations through three tasks: stellar type
classification, regression of stellar parameters, and cross-survey data generation. We also emphasize
the scalability of these methods to a range of modalities. To achieve this, we focus on Contrastive
Learning (CL) due to its demonstrated effectiveness in downstream tasks across natural language and
computer vision, as evidenced by the success of cross-modal models like CLIP [29]. CL has also
shown promise in galaxy surveys [20], is supported by strong theoretical foundations for generating
robust representations [33], and is well-suited for scalable multimodal learning.
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2 Method: Multimodal Machine Learning and Contrastive Learning
Theoretical considerations attribute multimodal approaches with some advantages relative to unimodal
algorithms, e.g. better training with less data [19]. A common understanding of a modality is to
associate it with one specific sensory input, that has been acquired in one specific way, as opposed to
any other. Thus, multimodality describes a research problem or dataset that incorporates multiple
different modalities. Currently, the most prevalent form of multimodality includes natural language
and vision, while historically it’s beginnings lie in audio-visual speech recognition [36]. Typical tasks
for multimodal ML are: representation, translation, alignment, fusion or co-learning [4], see section
A.1 in the appendix for more explanation on these terms.

Contrastive Learning Implementation We implement our model as a coordinated representation
by employing one encoder per modality and coordinating the representations via a similarity-based
loss (InfoNCE [32] / NT-Xent [9]). Following CLIP [29], we implement CL as in ALIGN [18] such
that the loss function takes the form:
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where xi are L2-normalized embeddings of one modality, yi are L2-normalized embeddings of the
other modality and τ is a temperature hyper-parameter. The second term switches the role of the
modalities in the first term. As eq. 1 implies, the similarity between samples is calculated as cosine
similarity. The temperature hyper-parameter was introduced in [9] to help the model learn from
hard negatives - negatives closer to the anchor than the anchor positive. Working with more than
two modalities commonly entails a linear combination of pairwise contrastive losses. In detail, for
every training batch (16384 spectra), the data is run through the modality specific encoders and
L2-normalized, positioning the embeddings on a hypersphere. From here, a similarity matrix is
computed, which calculates the dot-product of every cross-modality instance combination scaled by
the temperature τ from eq. 1. The diagonal elements correspond to positive pairings; every other
element to a negative pairing. The loss (eq. 1) can be calculated by applying multi-class softmax
cross-entropy (also called categorical cross-entropy) to every row, where only the diagonal entries
(positive pairs) are considered as correct class predictions. To calculate the symmetrizing second
term of eq. 1, the same calculation is repeated with a transposed similarity matrix and both loss terms
are added for the total loss. We use the LAMB optimizer [35] because of its higher performance
capabilities on bigger batches. At the start of every epoch, the training set is shuffled to avoid that
any data instance would always only be compared to a fixed subset (the corresponding batch) of
other instances. We choose a fixed temperature of τ = 0.1 as in [20] (but see also [29] for a trainable
temperature). Note, the results presented here depend on the exact temperature value chosen. We
have explored different temperature values and found τ = 0.1 to perform best. For the latent size,
the physical dimensionality is taken into account–eight stellar parameters and up to 20 abundances–
which we round to the next highest power of two, i.e. 32. The hyper-parameters for CL training are
summarized in the appendix 1.

Network Architectures Two different data formats are encountered – a spectrum and spectral
coefficients. The physics of spectra suggests strong correlations between adjacent bins. RVS spectra
are encoded by convolutional neural networks (CNNs) while spectral coefficients are encoded by a
1-layer MLP. The 1-layer MLP consists of an input layer, one hidden layer and an output layer, the
biases of the linear combinations are set to zero and the non-linear function is Leaky-ReLu (0.01).
Additionally, to combat overfitting, Dropout is used between the input and hidden layer with dropout
probability pdpo = 0.2. Dropout is only active in the training phase, in the evaluation phase no output
is masked. Entries, which are not masked out are scaled by 1/(1− pdpo) to keep the expected output
for training the same as for testing. After an extensive hyper-parameter search we choose for the
XP 1-Layer MLP a hidden layer size of 1024.

Our Convolutional Neural Network is adopted from the RVS-CNN by [15], specifically only the RVS
processing part, which is then followed by a custom feed-forward network. Again, all layers are
implemented without bias terms and the beginning and end of the layer inputs are padded by zeros, to
allow the kernel to center on the positions of the edge elements. Convolutions are implemented in
parallel, which in turn increases the channel dimensionality. Dimensionality reduction is achieved by
max-pooling layers. Every layer, except the output and max pooling layers, implements Leaky-ReLu
(0.01) as activation. The final feed-forward network implements layer-wise dropout with a dropout
rate of 20%. For a summary of the encoder architectures see Fig. 4 in the appendix.
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Our cross-modal generation decoder follows [27] which implement a MLP decoder for galaxy
spectra, which we transfer to the RVS spectra. Key feature is an activation function of the form

f(x) =

[
γ +

1− γ

(1 + e−β⊙x)

]
⊙ x (2)

where γ and β are trainable parameters [2]. This activation is able to cover smooth features for small
β and sharp changes in gradient for β → ∞ which supports easier modeling of spectral lines. For
XP coefficients we use a simple MLP.

Code and Hardware All code is implemented in the python library JAX [6]. Neural networks are
build with the Flax [16] package. Training routines, like optimizer and learning rate scheduling, are
supported by Optax, while saving and loading network parameters is done by Orbax [11]. Datasets
are handled by the Huggingface datasets package [22]. Training and inference takes place on a
single Nvidia A100 with 40 GB of VRAM.

Dataset We use Gaia DR3 RVS spectra and Gaia XP coefficients of 841,300 instances from
[15]. This dataset is ideally suited for the task of exploring representation learning as the RVS
spectra represent a relatively small dataset of high quality and high information content while the
XP coefficients encompass a much larger dataset of low quality data. Being able to transfer labels
and find a common representation space for these two data modalities nicely showcases the benefit
of representation learning for stellar spectra analysis. Furthermore, for most of these instances
there are spectral types available from Gaia’s Extended Stellar Parametrizer for Emission-Line Stars
(ESP-ELS) [12], as well as stellar parameters from GSP-Spec [30] and GSP-Phot [3].

For an additional 44,780 samples, APOGEE labels are available. The RVS spectra have been z-scale
normalized to facilitate training the neural networks. Additionally, all BP & RP coefficients have
been divided by the first coefficient, like in [15]. Afterwards, the first coefficients of BP & RP have
been log-scaled to bring the distribution closer to a normal distribution, and then z-scaled as well. All
other XP entries are left in their unnormalized state, as their absolute magnitudes contain information
on their relevance. The 841,300 instances without APOGEE labels are used as the training set. While,
the 44,780 instances with APOGEE labels constitute the validation set, to facilitate downstream
regression tasks for validation.

3 Results

Figure 1: UMAP visualization of the XP training
set embeddings with parameters metric=cosine,
n_neighbors=50, min_dist=0.2; colored by
spectral type.

Structured Embedding Space For a qualita-
tive inspection of the information content and
structuredness of the embedding space we apply
UMAP [26] to generate a 2-d visualization of the
32-d embedding space. UMAP parameters are
listed in the appendix ??. We color the resulting
UMAP embedding for the XP training data by
spectral type (Fig. 1) and stellar parameters Teff ,
log g and the abundance of all metals ([M/H])
and α-elements ([α/M ], Fig. 5 in the appendix).
We have further analysed the RVS training set
embeddings (see Fig. 5 in the appendix) and
find the same results as for XP training data
which we show here.All projections colored by
spectral type show large homogeneously colored
regions. This implies that in the original embed-
ding space, objects with the same type share a
common neighborhood. Moreover, some classes
continuously transition into others, like K & M,
F & G, B & A. These pairings also form more
separated clusters from another. Thus leading to separations from G to K and A to F. Additionally,
there is some kind of duplication, in that there are two big clusters with a similar color sequence
and subclusters. Overall, it is noteworthy that the transitions between classes coincide with the
physically informed stellar sequence: OBAFGKM. An inspection of the projections colored by stellar
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Figure 2: Prediction-vs-ground-truth plots for k-NN predictions (k=13) from RVS and XP for Teff

and [α/M ]; grey line corresponds to the one-to-one line.

parameters (see Fig. 6 in the appendix) shows continuous transitions between parameter values. This
is most notable for the effective temperature Teff , the surface gravity log g and the abundance of
α-elements [α/M ]. Still, also for [M/H] homogeneous color patches are visible, if slightly more
interspersed in some regions for the training set. Additionally, we find two separate patches where
Teff ∼ 4500 K (spectral class M) is similar but log g is different (2 vs. 4) which might point to
a physical separation of dwarfs and giants. All together, the UMAP projections indicate, that the
embedding space encodes physically meaningful information.

Zero-shot regression with k-Nearest Neighbours Next, zero-shot regression onto stellar parame-
ters is performed and the R2-score, also called coefficient of determination, for each of the stellar
parameters is calculated. In Fig. 2 we show results for Teff and [α/M ] for k = 13. The effective
temperature achieves the highest score with 0.9874, while the α-element abundance performs worst
with a R2-score of 0.8488. We find that Teff shows only a small spread over the whole temperature
domain, while [α/M ] exhibits larger errors between 0.1 and 0.2 dex. In general a high R2-score
from a k-NN algorithm was again to be expected, since the visual inspection in Fig. 6 also indicated
homogeneous neighbourhoods with respect to stellar parameters.

Cross-modal retrieval The four closest entries based on the cosine similarity are retrieved to
perform cross-modal retrieval. In the appendix, Fig. 7 shows RVS spectra retrieved by XP coefficients,
and Fig. 8 XP coefficients retrieved by RVS spectra. Note, that in the case of spectra the retrieved
neighbors show variation in the noisy plateau area. Meanwhile, in the area of spectral lines the
retrieved entries are mostly placed directly behind the ground truth. For the XP coefficients the
variation is higher, with some neighbors in proximity of the ground truth, but not all.

Cross-modal generation Using the cross-modal decoder, we investigate the performance of cross-
modal generation of the more complicated modality (RVS) from the simpler one (XP). Example RVS
spectra generated from XP coefficient embeddings together with the ground truth spectra and the
respective residual are shown in Fig. 3. This analysis shows that the residuals are on the magnitude
of the measurement error and that key features of the spectra such as strong and weak absorption
lines are well reproduced.

4 Summary and Outlook
In this work, we have used contrastive learning, a state-of-the-art multimodal ML algorithm,
to generate informative representations of stellar spectra from multi-modal data, namely Gaia
RVS and XP spectra. We map the raw data into a shared representation space using a CNN
for RVS and a 1-layer MLP for XP. We find that multi-modal learning creates a highly struc-
tured latent embedding of the stellar spectra that aligns well with fundamental stellar parameters.
We show the information content of this embedding space for downstream tasks such as regres-
sion, classification and cross-modal retrieval via simple k-Nearest Neighbor search. Moreover,
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Figure 3: Four samples of cross-modal generation with fusion scheme Single Fusion; on the right
side the residuals are plotted against the ground truth measurement error.

we explore cross-modal generation via decoder networks to generate RVS spectra from XP co-
efficients and vice-versa. For all tasks we find excellent performance which highlights the ben-
efit of contrastive learning for stellar spectra analysis from multiple different surveys. All our
code is publicly available at https://codeberg.org/cschwarz/ba_multispecs, as well as
the dataset at https://huggingface.co/datasets/christianschwarz/deep-multimodal-
representation-learning-for-stellar-spectra for full reproducibility.

In general, taking on more modalities and leveraging on the large body of stellar spectral surveys
is the obvious next direction of this project. Another avenue, would be to train not only observed
spectra, but also on synthetic ones. This could also be combined with pre-training an encoder on
synthetic spectra, to then only fine-tune the last layers for the real spectra. Regarding the encoder
networks themselves, several other networks might be explored. Specifically, the XP coefficients
should be better processed by an attention-based architecture. This is speculated because the spectral
coefficients don’t share stronger correlations with their neighbors. However, spectral data can also
be processed by attention-layers, after CNNs have reduced the dimensionality of the input. Lastly,
the cross-modal generation of any data is restricted by the capabilities of the decoder. Recently, the
design which showed the best performance for the generation task are diffusion models. For those,
Contrastive Learning lays the foundation, in that the learned embeddings are used as conditions for
generation. Furthermore, diffusion models often employ a pre-trained autoencoder. Since in the
context of this work contrastive learning, as well as autoencoder training routines were implemented,
the way towards diffusion models in multimodal astrophysics has been paved. Finally, to extend
this work to probabilistic representation spaces, entails expanding the similarity metric to compare
probabilistic embeddings.
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Gaia DR3: Tracing the [α/M] - [M/H] bimodality from the inner to the outer Milky Way disc
with Gaia-RVS and convolutional neural networks. Astronomy and Astrophysics, 682:A9, 2024.
ISSN 0004-6361. doi: 10.1051/0004-6361/202347122. URL https://ui.adsabs.harvard.
edu/abs/2024A&A...682A...9G.

[16] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

[17] Shuxin Hong, Zhiqiang Zou, A-Li Luo, Xiao Kong, Wenyu Yang, and Yanli Chen.
PhotoRedshift-MML: A multimodal machine learning method for estimating photometric
redshifts of quasars. Monthly Notices of the Royal Astronomical Society, 518(4):5049–5058,
2023. ISSN 0035-8711. doi: 10.1093/mnras/stac3259. URL https://doi.org/10.1093/
mnras/stac3259.

[18] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
Sung, Zhen Li, and Tom Duerig. Scaling Up Visual and Vision-Language Representation
Learning With Noisy Text Supervision. 2021. doi: 10.48550/arXiv.2102.05918. URL http:
//arxiv.org/abs/2102.05918.

[19] Ari Karchmer. On Stronger Computational Separations Between Multimodal and Unimodal
Machine Learning. 2024. URL http://arxiv.org/abs/2404.02254.

[20] Francois Lanusse, Liam Parker, Siavash Golkar, Miles Cranmer, Alberto Bietti, Michael Eicken-
berg, Geraud Krawezik, Michael McCabe, Ruben Ohana, Mariel Pettee, Bruno Regaldo-Saint
Blancard, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. AstroCLIP: Cross-Modal Pre-
Training for Astronomical Foundation Models. 2023. URL https://arxiv.org/abs/2310.
03024v1.

9

https://dx.doi.org/10.1088/1538-3873/acc7ca
https://ui.adsabs.harvard.edu/abs/2024A&A...682A...9G
https://ui.adsabs.harvard.edu/abs/2024A&A...682A...9G
http://github.com/google/flax
https://doi.org/10.1093/mnras/stac3259
https://doi.org/10.1093/mnras/stac3259
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2404.02254
https://arxiv.org/abs/2310.03024v1
https://arxiv.org/abs/2310.03024v1


[21] Henry W Leung and Jo Bovy. Towards an astronomical foundation model for stars with a
transformer-based model. Monthly Notices of the Royal Astronomical Society, 527(1):1494–
1520, 2024. ISSN 0035-8711. doi: 10.1093/mnras/stad3015. URL https://doi.org/10.
1093/mnras/stad3015.

[22] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von
Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison,
Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor
Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger,
Clément Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault
Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A
community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184.
Association for Computational Linguistics, 2021. URL https://aclanthology.org/2021.
emnlp-demo.21.

[23] Jiadong Li, Kaze W. K. Wong, David W. Hogg, Hans-Walter Rix, and Vedant Chandra. AspGap:
Augmented Stellar Parameters and Abundances for 23 million RGB stars from Gaia XP low-
resolution spectra. 2023. doi: 10.48550/arXiv.2309.14294. URL http://arxiv.org/abs/
2309.14294.

[24] Yi Liu, Jing Jin, Hongyang Zhao, Xujie He, and Yanan Guo. MFPIM: A Deep Learning
Model Based on Multimodal Fusion Technology for Pulsar Identification. The Astrophysical
Journal, 954(1):86, 2023. ISSN 0004-637X. doi: 10.3847/1538-4357/acd9c8. URL https:
//dx.doi.org/10.3847/1538-4357/acd9c8.

[25] S. R. Majewski, APOGEE Team, and APOGEE-2 Team. The Apache Point Observatory
Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2. Astronomische
Nachrichten, 337(8-9):863, Sep 2016. doi: 10.1002/asna.201612387.

[26] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. 2020. doi: 10.48550/arXiv.1802.03426. URL
http://arxiv.org/abs/1802.03426.

[27] Peter Melchior, Yan Liang, ChangHoon Hahn, and Andy Goulding. Autoencoding Galaxy
Spectra I: Architecture. The Astronomical Journal, 166(2):74, 2023. ISSN 0004-6256, 1538-
3881. doi: 10.3847/1538-3881/ace0ff. URL http://arxiv.org/abs/2211.07890.

[28] Siddharth Mishra-Sharma, Yiding Song, and Jesse Thaler. PAPERCLIP: Associating As-
tronomical Observations and Natural Language with Multi-Modal Models. 2024. doi:
10.48550/arXiv.2403.08851. URL http://arxiv.org/abs/2403.08851.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. 2021.
doi: 10.48550/arXiv.2103.00020. URL http://arxiv.org/abs/2103.00020.

[30] A. Recio-Blanco, P. de Laverny, P. A. Palicio, G. Kordopatis, M. A. Álvarez, M. Schultheis,
G. Contursi, H. Zhao, G. Torralba Elipe, C. Ordenovic, M. Manteiga, C. Dafonte, I. Oreshina-
Slezak, A. Bijaoui, Y. Fremat, G. Seabroke, F. Pailler, E. Spitoni, E. Poggio, O. L. Creevey,
A. Abreu Aramburu, S. Accart, R. Andrae, C. A. L. Bailer-Jones, I. Bellas-Velidis, N. Brouil-
let, E. Brugaletta, A. Burlacu, R. Carballo, L. Casamiquela, A. Chiavassa, W. J. Cooper,
A. Dapergolas, L. Delchambre, T. E. Dharmawardena, R. Drimmel, B. Edvardsson, M. Foues-
neau, D. Garabato, P. Garcia-Lario, M. Garcia-Torres, A. Gavel, A. Gomez, I. Gonzalez-
Santamaria, D. Hatzidimitriou, U. Heiter, A. Jean-Antoine Piccolo, M. Kontizas, A. J. Korn,
A. C. Lanzafame, Y. Lebreton, Y. Le Fustec, E. L. Licata, H. E. P. Lindstrom, E. Livanou,
A. Lobel, A. Lorca, A. Magdaleno Romeo, F. Marocco, D. J. Marshall, N. Mary, C. Nico-
las, L. Pallas-Quintela, C. Panem, B. Pichon, F. Riclet, C. Robin, J. Rybizki, R. Santovena,
A. Silvelo, R. L. Smart, L. M. Sarro, R. Sordo, C. Soubiran, M. Suvege, A. Ulla, A. Val-
lenari, J. Zorec, E. Utrilla, and J. Bakker. Gaia Data Release 3: Analysis of RVS spec-
tra using the General Stellar Parametriser from spectroscopy. Astronomy & Astrophysics,
674:A29, 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202243750. URL
http://arxiv.org/abs/2206.05541.

10

https://doi.org/10.1093/mnras/stad3015
https://doi.org/10.1093/mnras/stad3015
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
http://arxiv.org/abs/2309.14294
http://arxiv.org/abs/2309.14294
https://dx.doi.org/10.3847/1538-4357/acd9c8
https://dx.doi.org/10.3847/1538-4357/acd9c8
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/2211.07890
http://arxiv.org/abs/2403.08851
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2206.05541
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A Appendix / supplemental material

A.1 Multi-modal learning taxonomy [4]

Representation Any vector or tensor representing an entity, is referred to as a representation (equiv-
alently embedding) [5]. For a multimodal problem the challenge lies in exploiting the
complementarity and redundancy of multiple modalities which is complicated by the hetero-
geneity of the multimodal data.

Translation Given an entity in one modality the task is to generate the same entity in a different
modality. The challenge arises from the possible existence of multiple mapping outputs that
are still consistent/correct.

Alignment The task is to find direct relations and correspondences between sub-components of
several modalities, by some kind of similarity definition.

Fusion This task entails integrating data from multiple modalities with the goal of predicting an
outcome measure, e.g. performing classification or regression. The challenge is posed by
each modality’s varying predictive power or noise regarding the outcome. Also, at least
one modality might be missing at inference time. Fusion benefits from multimodality, since
predictions become more robust, complementary information are utilized and the model
gains redundancy regarding sensory absence.

Co-Learning Here, the modeling of a (resource poor) modality is aided by exploiting knowledge
from another (resource rich) modality. Limited resources might entail: lack of annotated
data, noisy input, and unreliable labels. “Learning” points to the helper modality only being
used during training, not testing time.
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A.2 Hyperparameters

Table 1: Contrastive Learning hyperparameters
Hyperparameter Value
Batch size 16384
Training Epochs 4 x 100 (4 runs, keeping model parameters but resetting optimizer)
Temperature 0.1
LAMB weight decay 5 · 10−5

LAMB β1 0.9
LAMB β2 0.999
LAMB ϵ 10−6

Learning rate schedule 10 cosine decay cycles, with 1 linear warmup per cycle to peak value
Learning rate peak 5 · 10−3; 5 · 10−4; 5 · 10−5; 5 · 10−6

Table 2: Cross-modal generation hyperparameters
Hyperparameter Value
Batch size 16384
Training Epochs 100
LAMB weight decay 0.0
LAMB β1 0.9
LAMB β2 0.999
LAMB ϵ 10−6

Learning rate schedule 1 cosine decay cycle, with 1% linear warmup to peak value
Learning rate peak 5 · 10−4

Figure 4: Network architecture of RVS spectra encoder (left), based on [15], and XP coefficient
encoder (right)
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B Additional Figures

Figure 5: UMAP visualization of the RVS training set embeddings with parameters metric=cosine,
n_neighbors=50, min_dist=0.2; colored by spectral type.

Figure 6: UMAP visualization of RVS training set embeddings with parameters metric=cosine,
n_neighbors=50, min_dist=0.2; colored by stellar parameters; Teff upper left, log g upper right,
the abundance of all metals ([M/H]) lower left and α-elements [α/M ] lower right.
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Figure 7: Similarity lookup from XP coefficients to RVS spectra for four example coefficients.
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Figure 8: Similarity lookup from RVS spectra to XP coefficients for four example spectra; the scale
is a symmetric logarithmic scale with linear scaling around zero.
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