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Abstract

We present a workflow based on physics-informed neural networks (PINNs) to
model multiphase flow in fractured porous media. After validating the method on
a synthetic problem, it was applied to an experimental dataset where brine was
injected into a CO2-saturated fractured shale core, with the fractures and fluid
distribution imaged using CT scans. A domain decomposition approach was used
for matrix and fractures, with a multi-network architecture to separately compute
the state variables of each domain. A novel hybrid pre-training strategy was applied
to enable the model to capture the system’s complex multiscale attributes. By
history matching of multi-fidelity observations, flow parameters were determined,
with multiple initializations performed to assess uncertainty and uniqueness. The
workflow showed high precision in retrieving key flow characteristics and accounted
for multiscale effects. Additionally, the accuracy and computational efficiency
of the proposed approach were compared with an existing method, numerical
simulation, demonstrating superiority by order(s) of magnitude in both aspects. To
our knowledge, this is the first workflow to efficiently solve inverse modeling of
multiphase flow in fractured porous media using noisy, multifidelity real-world
data.
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1 Introduction

Interpretation of multiphase flow phenomena in fractured porous media is challenging, because of
their intrinsic multiscale nature (1). Almost all natural porous media are to some degree fractured;
however, an inaccurate description of their influence on flow phenomena can lead to substantial errors
(2). Various numerical methods based on finite-element and finite-volume approaches have been
recommended to solve the problem more efficiently (3; 4). However, specially for inverse problems,
they typically face challenges such as high computational requirements and low convergence reliability
(5). Therefore, there is still a demand for more accurate and efficient prediction methods.

In this work, we have implemented a multiscale workflow based on Physics-Informed Neural
Networks (PINNs) (6) for the forward and inverse simulation of (3+1)D multiphase flow in fractured
porous media. This PINNs-based approach is proposed for reliable and computationally efficient
inverse modeling of multiphase flow in fractured porous media, suitable for history-matching noisy
and multifidelity experimental measurements. The robustness of the computational framework was
first demonstrated through validation using a synthetic benchmark problem, and the performance
was compared against a finite-difference (FD) based numerical simulator, as a common approach
in the community. Then we applied the workflow to model and interpret a complex experiment of
water injection into CO2-saturated fractured shale rock (7). We incorporated a large multi-fidelity
observational dataset, including 3D in situ saturation data measured using a high-resolution computed
tomography (CT) scan setup, in the process of inverse calculations.

Implications. Solving the inverse problem in this study is essential for supporting reliable decision-
making in real-world geoscientific applications, such as geological carbon storage and hydrocarbon
reservoir management. The results of the studied inverse problem can, for example, enable more
accurate and informed field-scale subsurface flow simulations.

Hypothesis. The hypothesis being tested is that PINNs, combined with a multiscale domain
decomposition approach, can effectively solve the inverse problem of multiphase flow in fractured
porous media by capturing complex dynamics and leveraging multi-fidelity observations to reduce
uncertainties, even in the presence of noisy data. Additionally, the study evaluates the impact of
coupled matrix-fracture interactions on the inverse-calculated coefficients of multiphase flow.

2 Methodology

Experimental Data. The availability and fidelity of experimental observations depend on laboratory
technologies and prior knowledge of system dynamics and geometry, though uncertainties can arise if
this knowledge is incomplete. Basic data include recovery factor curves and pressure measurements,
while advanced tools like dynamic CT-scan imaging can provide in-situ saturation data but may
not always be accessible. This study is motivated by the need for a workflow that efficiently can
evaluate and history-match an experimental dataset injecting brine into a CO2-saturated naturally
fractured shale rock core, as detailed in (7). The core was initially saturated with CO2, then brine was
injected. Dynamic CT images were captured at intervals, recording in-situ saturation, phase recovery.
Different fractures were identified from the CT scan images (8). Considering various scenarios, we
utilized either phase recovery vs. time or in-situ saturation data as observational inputs, in addition
to pressure and injection rate constraints.

Physics. Due to the complexities in geometry, we decomposed the domain into two subdomains,the
matrix and fracture systems. We refer to the low-permeability non-fractured domain as matrix (ΩM ),
and the high-permeability fractured domain as fracture (ΩF ). The matrix domain occupies the
majority of the pore volume while the fracture domain has much higher permeability than the matrix.
A schematic of the geometry of the core and the fractures is visualized in Fig. 1a. The Darcy velocity
(ui) of each phase is determined by Darcy’s law (9), ui = −λi∇pi, λi = Kkri/µi , where λi is
mobility, pi is the phase pressure, K and kri are absolute and relative permeabilities, respectively,
and µi is the phase viscosity. The index i determines wetting (w), and non-wetting (nw) phases.
The effects of gravity have been ignored. The capillary pressure function, pc = pnw − pw, relates
the phase pressures. kr and pc are functions of phase saturation, si, where sw + snw = 1. The
conservation law for the spatiotemporal mass transport of phases in the matrix and fracture domains
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is defined as
ϕ∂t (ρisi) = −∇ (ρiui) + q⊥i , (i = w, nw) , ∈ ΩM (1)

ϕF∂t
(
ρis

F
i

)
= −∇∥

(
ρiu

∥
i

)
− q⊥i , (i = w, nw) , ∈ ΩF (2)

where q⊥i is matrix-fracture mass flux term and is a function of the local pressure difference between
the two media, and the matrix flow properties (2). The unknown functions in this system are the kr
and pc functions, which for a capillary dominated system (the matrix), appear mainly in the capillary
diffusion coefficient, i.e., Λ = µmλnwfw (−dJ/dsw) (in scaled form). µm is the geometric mean
of the phase viscosities (

√
µwµnw), and fw is defined as the wetting phase relative mobility. Also,

pc and J are related via Leverett scaling (10), pc = σ
√

ϕ/KJ . Here, ϕ is porosity and σ is surface
tension. To solve the above coupled equations, we propose a PINNs-based workflow based on a
multiscale neural networks architecture, as explained below.

Model architecture and training. We defined neural networks (separately for matrix (Nm) and
fracture (Nf ) domains), to emulate the functional dependency between the independent and dependent
variables

sw, pnw = NM (x, y, z, t, θ, η) ∈ ΩM (3)

sfw, p
f
nw = NF (xf , yf , zf , t, θf , η) ∈ ΩF (4)

where, [x, y, z] and [xf , yf , zf ] are the spatial coordinates corresponding to the collocation points of
matrix and fracture, respectively (Fig. 1b). θ and θf are the network trainable parameters. The goal is
to solve an optimization problem where θm,f , η = argmin(Lt). Here, η is a set of inverse parameters
calculated during the inverse calculations. Also, Lt is the total loss term, defined to minimize the
errors in both the physical flow equations in the matrix and fracture, their underlying initial/boundary
conditions, as well as the available observation data. The outlet of networks are the state variables of
the system, that are the sw, and pnw. The total loss term is a weighted combination of matrix and
fracture losses, as well as losses corresponding to observational data, i.e., Lt = LM

t + LF
t + LD

t ,
where LM

t and LF
t are the total loss terms corresponding to the initial/boundary conditions, as

well as the PDE residuals for matrix and fracture domains, respectively. Minimizing these terms
ensures the PINNs solution respects the physical constraints within their domain. Furthermore, LD

t
represents the total loss term corresponding to the errors in the predictions of PINNs compared to the
observational data. The complete explanation of the PINNs implementation and the underlying loss
terms is provided in Appendix B. To address the inverse problem, we adopted an ansatz approach for
representing the kr and pc curves. This means a trainable vector was defined, where each element
corresponded to a parameter within the chosen correlations (eqs. (19), (20) and (31)). In the NNs, we
used the following sequence of operators: a normalization function, an encoder, a Fourier transformer,
a latent multilayer perceptron (MLP) network, an inverse Fourier transformer, a decoder network,
and a denormalization function (as shown in Fig. 1c). Fourier transformers were used to make the
networks capable of capturing high-frequency or multiscale behaviour (11) in the frontal regions
of the saturation profiles. The network was trained using an Adam optimizer, with resampling of
collocation points, and incorporating a gradually decreasing learning rate, from 0.0003, to 0.0001.

Pre-training. In the training, we started the computations with a pre-training strategy, then shifted
to fully-coupled modeling strategy (Fig. 1f). The pre-training helps stabilize computations by first
solving for individual domains independently. The physical implication of the pre-training assumption
is that the main matrix and fracture interaction mechanisms is capillary imbibition

Implementation. The workflow ensures efficient training by managing collocation points and
dimensionless loss terms. Collocation points were selected separately for the matrix and fracture
domains, leveraging system geometry and CT scan data, such as fracture locations. Boundary
collocation points were placed to capture inlet, outlet, and no-flow boundaries, while temporal points
were distributed based on a

√
t scheme to emphasize critical early-time imbibition effects. The loss

function integrates PDE residuals, boundary conditions, and observational data through dynamically
adjusted, dimensionless weights. These weights, normalized to ensure comparability across terms
with differing magnitudes, prevent any single component—such as high-gradient PDE residuals or
observational mismatches—from dominating the training. This normalization maintains numerical
stability and allows for balanced optimization across all data fidelities and physical constraints. More
information regarding the implementation of the workflow is provided in Appendices.
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Figure 1: A schematic review of the proposed PINNs-based computational workflow. a) The
simplified geometry of the matrix-fracture system and the impacting boundary conditions, b) The
spatial distribution of the matrix and fracture collocation points, c) Separate networks for the state
variables of matrix and fracture systems, d) The architecture of each NN, and e) the cross-sectional
view of the porosity distribution in the experimental data, f) the proposed step-wise learning strategy.

Assumptions. Although the average permeability of the shale rock was known, an accurate mea-
surement of the matrix permeability (K) was unavailable. The fracture permeability (KF ) was
estimated from flow rates derived during history matching. Linear relative permeability curves and
zero capillary pressure were assumed for fractures (12). These assumptions do not compromise the
generality of the methodology or the effective flow properties. Furthermore, while demonstrated on a
Brine-CO2 system, the approach is adaptable to other incompressible fluids, with potential extensions
to include phenomena like fluid compressibility, viscosity changes, varying rock/fracture properties
and gravity effects.

3 Results

At the beginning, we validated the proposed workflow against a synthetic scenario of imbibition flow
in a fractured porous media, with a vertical fracture parallel to the direction of the brine injection.
Fig. 2 shows the results, in which the proposed workflow could successfully regenerate the phase and
pressure distributions in porous media, compared to FD simulations (Fig. 2a). Also, it could greatly
calculate the inverse parameters (Λ curve) by history matching of the observation data, as well as the
total injection rate of brine (Fig. 2b), by history matching of the observations. For comparison, we
also attempted to history-match the problem using a coupled FD and Nelder-Mead (NM) optimizer.
In the case of inverse calculations, the workflow performed the calculations order(s) of magnitude
faster and more accurately than FD-based simulation methods (see Fig. 2c).

Then, we applied the framework to interpret and analyse a multi-fidelity experimental dataset for brine
injection in a CO2 saturated fractured shale rock. The studied experimental problem is characterized
by a confluence of complexities, e.g., significant permeability contrasts, unpatterned distribution of
fractures, and highly unfavorable mobility ratios. The results demonstrated the effectiveness of the
workflow in capturing the multiscale flow dynamics, as well as the phase and pressure distributions in
the system (Fig. 3a). The implemented uncertainty quantification analysis yielded valuable insights
into the unique and non-unique characteristics of the obtained solutions (Fig. 3b). Our comparison of
inverse calculations with and without fractures demonstrates the pivotal role of multiscale phenomena
in interpreting the experiments of imbibition in fractured porous media, as the presence of fractures
introduces a hierarchy of scales in the system. These multiscale effects, while commonly overlooked
in existing procedures, can significantly change the overall system behavior, influencing the scale of
inverse calculated parameters such as K, kr, and pc relationships, as well as the interplay between
different flow mechanisms in the system (Fig. 3c). Furthermore, we demonstrated the applicability of
the proposed workflow for history-matching noisy high-fidelity observational data (dynamic high-
resolution 3D CT images) and quantifying uncertainties in key system characteristics, such as fracture
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geometry, as illustrated in Fig. 3d and e. Considering these demonstrations, the proposed approach
offers valuable opportunities to identify and address uncertainties in the presumed mathematical
models and system geometries, ensuring a more accurate representation of the physical system.

Limitations. Despite the superiority of the proposed approach in the examples studied, increasingly
complex fracture distributions likely require even more complex neural networks architectures. This
highlights the need for developing more flexible network architectures and optimisers capable of
handling the significant non-linearities exist in such complex systems.

Summary. We propose a workflow based on PINNs for the modeling of (3+1)D two-phase flow
in fractured porous media. The results demonstrate the accuracy and computational efficiency of
the workflow, providing a reliable and efficient solution for inverse modeling of multiphase flow in
fractured porous media, achieved through history matching of real-world experiments with noisy,
multi-fidelity experimental measurements.

Figure 2: The results of inverse calculation for the synthetic benchmark model, based on
history matching of the RF curve vs. time. a) the saturation and pressure profiles compared to FD
simulation, b) The inverse calculated injection rate and capillary diffusion coefficient Λ, compared to
the true values, c) TA comparison of the run-time and accuracy of two history-matching approaches
in the estimation of the Λ curve: PINNs, and FD + Nelder-Mead (NM) optimizer, d) the training
trend, 1) The total loss term, Lt, and loss terms corresponding to the PDE residuals for matrix, i.e.,
LM
PI , LM

PIw, and LM
PInw, i.e., physics informed loss terms in matrix for w and nw phases , 2) Λ̄ (the

area under Λ).

Figure 3: The results for inverse calculation of matrix and fracture flow parameters by history
matching of the real experimental data. a) Comparing water saturation (sw) and wetting phase
pressure (pw) distributions in the porous media at t = 23.2 hr, b) The results of inverse calculations
for an ensemble of models with different initialization values. c) The impact of multiscale simulations
on the inverse calculated flow parameters of porous media, d) The PINNs solution for inverse
calculations when the in-situ water saturation data have been used as the observations e) The results
of fracture uncertainty quantification; ξf = 1 (gray) indicates minimal uncertainty, ξf = 0.6 (blue)
represents medium uncertainty, and ξf = 0.2 (red) represents high uncertainty.
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A Methods

A.1 Mathematics of Flow in Fractured Porous Media

We approach a problem of 3D multiphase flow in a fractured porous media at core scale. Our
focus is specifically on interpreting data from a cylindrical core-plug (a shale rock taken from the
Wolfcamp formation) (7). We refer to the low-permeability non-fractured zone as a matrix, and the
high-permeability fractured zone as a fracture. The model is inferred from the definition that the
matrix domain (ΩM ) occupies the majority of the pore volume and that fractures domain (ΩF ) have
a much higher permeability than the matrix. The geometric structures of the core and the fractures
are given in (7). A simplified schematic of the sample set-up is visualized in Fig. 1a. The core is
placed horizontally, and the fractures are distributed in the core with different orientations. The radial
surface of the core at rc is closed (no-flow boundary). The inlet and outlet faces are at y = 0 and
y = L, respectively. Water and CO2 are considered to be the wetting (w) and non-wetting (nw)
phases, respectively. In line with the experimental conditions, we neglected both the compressibility
and the solubility of the phases. The system is initially saturated with the nw phase. The definition of
the system implies that the flow phenomena are governed by mixed-imbibition mechanisms, where
the fracture flow is driven by forced imbibition, and the matrix flow is governed by spontaneous
imbibition between the fracture(s) and the matrix. Forced imbibition happens when an external
force drives the wetting phase fluid through the porous media, overcoming any resistance from the
medium and the non-wetting phase. Spontaneous imbibition, on the other hand, is the process in
which the wetting phase fluid flows into a porous media via capillary forces without the need for
external pressure (13). In the following, the mathematics of flow in matrix and fracture domains are
discussed.

Matrix flow. The Darcy flow velocity (ui) of each phase in the matrix is determined by Darcy’s
law

ui = −λi∇pi, λi =
Kkri
µi

, (i = w, nw) (5)

where λi is mobility, pi is the phase pressure, K and kri are absolute permeability and relative
permeability, respectively, and µi is the phase viscosity. The index i determines(w), and (nw)
phases. The effects of gravity have been ignored. The conservation law for the spatiotemporal mass
transportation of phases in a matrix zone is defined as

ϕ∂t (ρisi) = −∇ (ρiui) , (i = w, nw) , ∈ ΩM (6)

Given that swc = 0, we define the initial conditions as{
sw(x, y, z, t = 0) = 0
pnw(x, y, z, t = 0) = pi

,∈ ΩM (7)

At the inlet face (y = 0), the wetting phase is injected under a constant pressure pin over time. At
this face, it is assumed the wetting phase takes the highest possible mobility{

sw(x, y = 0, z, t) = 1− snwr

pw(x, y = 0, z, t) = pin
(8)

The production from the outlet face (y = l) occurs at a constant pressure, pout

pnw(x, y = L, z, t) = pout (9)

At the outlet face of the core, no explicit constraints are imposed on the saturation of the fluid phases.
The radial faces (r = rc) are sealed from flow in radial directions

∂p

∂r
|r=rc ≈ |∂p

∂x
|r=rc + |∂p

∂z
|r=rc | = 0 (10)

The assumed matrix properties state that the flow in the matrix is governed by viscous and capillary
forces (gravity effects are assumed to be negligible).
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Fracture flow. A fracture is typically characterized as a narrow, and high permeability zone
enclosed by a less permeability matrix zone. This contrast in properties leads to highly heterogeneous
flow behavior across the scales. The aperture between the fracture surfaces is generally small and is
normally occupied by filling materials, that affects its effective porosity and permeability values (14).

Although fractures are discontinuities in the porous medium, they are considered as a separate porous
medium domain (ΩF ). This assumption enables us to apply Darcy’s law. Consequently, we assume
fractures to be high permeability porous zones. This makes the equations in the two media consistent,
eliminating the need for unnecessary complexities in the calculations (15). So, the average flux of
each flowing phase in a fracture is written by modification of Darcy’s law in eq.(5) as

v
∥
i = −λ

∥
i∇

∥pi, λ
∥
i =

KF k
∥
ri

µi
, (i = w, nw) . (11)

In this equation, KF is the fracture permeability, and k
∥
ri is the relative permeability of the fluids in

the fracture. The value of the KF is dependant on the fracture aperture, and also the extent of the
filling materials in the fracture.

Matrix-fracture interactions. The accurate treatment of multiphase flow in a fractured porous
media depends on the modeling of the dynamic matrix-fracture coupled interactions. Utilizing
Darcy’s law (2), the matrix-fracture flux is approximated by

v⊥i = −2K⊥λ⊥
i

[
pM,i − pF,i

eV

]
, λ⊥

i ≃ kri
µi

, (i = w, nw) , (12)

where K⊥ refers to the matrix-fracture permeability normal to the fracture surface, and eV is the
fracture average aperture. As an ideal case, if one assumes a fracture as an open space between two
parallel surfaces, then the aperture is called the hydraulic aperture, eh. In practice, the value of ev is
much larger than eh, i.e., ev >> eh, as the fractures are normally filled with materials. The value of
KF is theoretically correlated to ev . In this study, the fracture aperture, ev , is assumed to be 0.001 m
for all the fractures, and kept constant in all the evaluations. The cumulative value V ⊥

i (t) of a rate
v⊥i (t) over time is given by the following integral

V ⊥
i (t) =

∫ t

0

v⊥i (τ) dτ, (i = w, nw) . (13)

We can rewrite eq.(12) to obtain the mass transfer rate [kg/m3/s] between the two media as

q⊥i =
2ρi
eV

v⊥i , (i = w, nw) . (14)

The factor 2 denotes the flow across both sides of fracture to matrix, assuming the equal flow
characteristics across the two surfaces of the fracture. Then, the cumulative injected mass [kg/m3] is

Q⊥
i (t) =

∫ t

0

q⊥i (τ) dτ, (i = w, nw) . (15)

The eq.of mass conservation in the fracture is the same as in the matrix, with an additional term
representing the mass from the fracture to the matrix q⊥i . So, by modifying the matrix mass balance
equation (eq. (6)), we define the mass balance in the fracture system as follows

ϕF∂t
(
ρis

F
i

)
= −∇∥

(
ρiu

∥
i

)
− q⊥i , (i = w, nw) , ∈ ΩF (16)

At the contact point of the matrix and fractures, the continuity equation should also be solved in the
matrix domain. So, we may rewrite eq. (6) as

ϕ∂t (ρisi) = −∇ (ρiui) + q⊥i , (i = w, nw) , ∈ ΩM (17)

The fraction of the pore volume of the matrix [dimensionless] that has been transferred between the
matrix and fracture can also be calculated using the following equation

V ⊥
i (t) =

Q⊥
i (t)

ϕρi
, (i = w, nw) , (18)
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Closure equations. Capillary pressure and relative permeability curves are crucial input to model
multiphase flow in porous media, e.g., in eqs. (6), (16) and (17). These curves are normally defined
using theoretical correlations, with a few matching parameters. In this work, we apply an extended
version of the Corey function (16) to model relative permeability curves

krw(Sw) = kmax
rw (Sw)

nw ; nw = nw1Sw + nw2(1− Sw) (19)

krnw(Sw) = kmax
rnw (1− Sw)

nnw ; nnw = nnw1Sw + nnw2(1− Sw) (20)

In the extended version, nw and nnw are defined as saturation exponents that are weighted linearly
with saturation Sw. Sw is the normalized water saturation and is calculated as

Sw =
sw − swc

1− snwr − swc
; (21)

The capillary pressure curve Pc(Sw) [pa] is calculated via Leverett scaling (10)

Pc = σ

√
ϕ

K
J (22)

In this context, J(Sw) represents the Leverett J-function, a dimensionless function that describes the
shape of the capillary pressure curve. We define J-function via the modified (17) correlation

J(Sw) = −J1ln(
Sw

Seq
) + J2ln(

1− Sw

1− Seq
) (23)

The equation is hard constrained in a way that that J(Seq) = 0 and that dJ/dSw becomes infinite at
endpoints.

However, previous research by (18) demonstrated that capillary-dominated two-phase flow in porous
media (spontaneous imbibition) can be uniquely characterized by the capillary diffusion coefficient
(CDC) curve. This curve represents a mixed combination of flow properties of both phases

Λ = µmλnwfw

(
− dJ

dSw

)
(24)

In this equation, µm is the geometric mean of the phase viscosities (
√
µwµnw). The CDC curve,

as well as the dynamics of multiphase flow in porous media is mainly controlled by the relative
permeability of the phases and the capillary pressure curves. Measurement of these curves is
challenging and typically requires indirect methods, such as history matching using numerical
simulations (19). However, history matching in complex geometries, such as fractured porous media,
is a challenging task that involves significant computational complexities. The challenge becomes
more serious when high-fidelity datasets, such as CT-scan images, must be matched. In this work, we
propose the application of PINNs as a reliable framework for history matching and characterisation
of such problems.

Known and unknown parameters. To characterize fully the discussed system of equations,
it is crucial to determine and understand the properties of both the matrix and the fractures. The
determination of fluids properties, or average porosity and permeability of rock can be done using
simpler methods. However, determination of the multiphase flow properties of the system - i.e.,
the relative permeability (kr) and capillary pressure (pc) of the matrix - is essential for accurately
understanding the governing mechanisms, and this primarily requires multiphase experimental core
flooding tests, in which the cylindrical rock is first saturated by a phase, then injected by the second
phase at controlled pressures and flow rates. The kr curve can be fully addressed via six parameters
related to the Corey model (eqs. (19) and (20)): kmax

rw , kmax
rnw , nw1 and nw2, nnw1 and nnw2. Also,

the pc curve can be characterized via J1 and J2 parameters, based on eq. (23).

Due to the small pore volume of the fractures, we can reasonably assume a constant fracture
porosity. The fracture permeability (KF ), which significantly impacts the overall flow rate during
the experiments, needs to be calculated. Additionally, for simplicity, we assumed linear relative
permeability curves for fractures (12).
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A.2 Methodology

Physics-Informed Neural Networks (PINNs) were introduced by (6) as an efficient method for solving
differential equations by combining neural networks with physics-based principles. In this study,
we defined neural networks (separately for matrix (Nm) and fracture (Nf ) domains), to emulate the
functional dependency between the independent and dependent variables

sw, pnw = NM (x, y, z, t, θ, η) (25)

sfw, p
f
nw = NF (xf , yf , zf , t, θf , η) (26)

where, [x, y, z] and [xf , yf , zf ] are the spatial coordinates corresponding to the collocation points of
matrix and fracture, respectively. θ and θf are the network trainable parameters. The goal is to solve
an optimization problem where

θm,f , η = argmin(Lt) (27)

where η is a set of inverse parameters calculated during the inverse calculations. Also, Lt is the
total loss term, defined to minimize the errors in both the physical flow equations in the matrix and
fracture, as well as the available observation data. The outlet of networks are the state variables of
the system, that are the sw, and pnw. The total loss term is a weighted combination of matrix and
fracture losses, as well as losses corresponding to observational data

Lt = LM
t + LF

t + LD
t (28)

where LM
t and LF

t are the total loss terms corresponding to the initial/boundary conditions, as well as
the PDE residuals for matrix and fracture domains, respectively. Minimizing these terms ensures the
PINNs solution respects the physical constraints within their domain. Furthermore, LD

t represents the
total loss term corresponding to the errors in the predictions of PINNs compared to the observational
data. The complete explanation of the PINNs implementation and the underlying loss terms is
provided in Appendix B.

To address the inverse problem, we adopted an ansatz approach for representing the relative perme-
ability and capillary pressure curves. This means a trainable vector was defined, where each element
corresponded to a parameter within the chosen correlations for these curves (equations (19), (20) and
(31)). More information regarding the initialization and definition of the inverse variables is provided
in Appendix D.

A.3 Model Architecture

The architecture of the applied PINNs model is shown in Fig. 1. Due to the complexities in the
geometry, and non-linearities in flow profiles, we considered the matrix and fracture systems as
decomposed domains. Then, separate networks were allocated to each domain, to increase the
flexibility of the networks in capturing the high-frequency trends in the solution of equations. Also,
for each domain, the system state variables, i.e., pressure (pnw) and water saturation (sw) had separate
networks (Fig. 1b). Before passing the data to the network, the input data was normalised to the
approximate range of (-1,1). The (de)normalization technique is discussed in Appendix D. In the
NNs corresponding to the Sw values (for both matrix and fracture), we used the following sequence
of operators: an encoder, a Fourier transformer, a latent multilayer perceptron (MLP) network, an
inverse Fourier transformer, and a decoder network (as shown in Fig. 1c). The outlet of the NNs
is then denormalized to the range of actual values. The Fourier transformers were used to make
the networks able to capture the high-frequency or multiscale behavior (11) in the frontal regions
of the saturation profiles. The NNs for the calculation of pnw were similar, except that the Fourier
and inverse Fourier transformations were not applied. The MLP network, which had a depth of five
and a width of 80 neurons, was activated by an adaptive tanh activation function. The model was
initialized using the Glorot initialization scheme (20). Separate MLP networks were used to address
the self-adaptive local weighting of the errors in PDE residuals for matrix and fracture domains. See
Appendices B and D for more details.

Training: The network was trained utilizing an Adam optimizer employing a full-batch approach
and incorporating a gradually decreasing learning rate, from 0.0003, to 0.0001. We have applied a
weight decay value of 0.0001. The number of gradient descent training steps (epochs) depended on
the problem’s complexity. Typically, 15,000 to 25,000 epochs were needed for stable error values.
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Table 1: The network properties for the synthetic benchmark model

Property Value Property Value
NM Width 80 NM Depth 8
NF Width 60 NF Depth 6
Activation Function Adaptive tanh Optimizer Adam
Learning Rate (lr) 2e-4 Weight Decay 1e-4
Batch size 36000 Fourier Transform Active for sw

A.4 The Solution Approach

The investigated system of equations governing the matrix and fracture domains exhibits a complex
interdependency. In this context, training the model using a fully-coupled approach generates
chaotic computational behavior as the interaction terms between the matrix and fracture domains
are highly sensitive to the accuracy of the calculations performed in each domain individually. On
the other hand, the invasion of fluids from the fracture into the matrix domain is a strong function
of the values of the interaction terms. Crucially, the differing loss landscapes of the matrix and
fracture PINNs models result in distinct convergence behaviors. To mitigate these issues, alternative
preconditioning techniques are necessary (21). In this work, we suggested to apply a sequence of
pre-training training steps before performing the fully-coupled simulations. The details of the applied
approach is visualized in Fig. 1e. In this process, at first, the matrix and fracture networks are trained
individually, without utilizing any coupled inter dependencies. Then, we shift to the fully-coupled
training technique.

However, the utilisation of the pre-training technique, although considers many of the possible flow
mechanisms, neglects the impact of mechanisms such as viscous flow interactions between the matrix
and fracture. The difference gets more critical when the permeability and capillary variation in matrix
and fracture media is less significant. The mentioned mechanisms are naturally considered in the
fully coupled approach. So, after pre-training of the networks, and reaching an equilibrium in the
training process, we switch to the fully coupled technique. The mathematics behind coupling the
matrix and fracture is previously explained in section A.1.

Pre-training: This stage leverages the model reduction technique (22) as a means to tackle mul-
tiscale problems. To do so, we applied an independent training strategy for matrix and fracture at
the beginning of training, before shifting to the fully-coupled training strategy. In this approach,
instead of defining the matrix-fracture transfer to modify the PDEs of flow, we explicitly applied their
impacts as the boundary conditions in the matrix as follows.

• Matrix: The multiphase flow in the matrix is analyzed by assuming that the sw and the pnw
in the matrix at points of intersection with fractures are equal to the corresponding values in
the fractures

sw = sF,BL
w , ∈ ΩMF (29)

pnw = pF,BL
nw , ∈ ΩMF (30)

sF,BL
w is calculated using the 1D Buckley-Leverett (BL) theory, and pF,BL

nw is calculated
using linear pressure distribution assumption. The Buckley-Leverett theory offers a funda-
mental analytical approach for forecasting the saturation profile and front velocity of the
displacing fluid in two-phase flow in porous media. The BL theory is explained in Appendix
E.

• Fracture: The PINNs model corresponding to the PDE of multiphase flow in fractures is
solved by ignoring the interactions with matrix.

In the case of inverse calculations, before starting the optimization of inverse variables, it is essential
to partially train the networks so that they can learn the main characteristics of the problem. This
approach has been successfully applied in previous studies, such as those by (23) and (24). At this
step, the trainable inverse parameters are kept frozen for some limited epochs.
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Table 2: The network properties applied for the experimental problem.

Property Value Property Value
NM Width 80 NM Depth 8
NF Width 60 NF Depth 6
Activation Function Adaptive tanh Optimizer Adam
Learning Rate (lr) 0.10 Weight Decay 1e-4
Batch size 46000 Fourier Transform Active for sw
Resampling Sequence 10 Temporal Sampling Cartesian

A.5 Experimental Data

This study is motivated by the need for a workflow that efficiently can evaluate and history-match
an experimental dataset injecting brine into a CO2-saturated naturally fractured shale rock core, as
detailed in (7). Shales are considered tight media with very low permeability and have only the recent
decades been developed for hydrocarbon production due to advances in hydraulic fracturing and
drilling technology. The affinity of shale to adsorb CO2 (e.g. over CH4, shale gas) has also resulted
in opportunities to sequester carbon in shales. The examined cylindrical Wolfcamp shale core had a
length of 5.8 cm, diameters of 2.5 cm, an average permeability of 1.97e− 17 m2 (0.020 mD) and
porosity of 0.102. The reported permeability represents the average permeability of both the matrix
and fractures, with the matrix permeability expected to be significantly lower. The core was initially
saturated with CO2, then brine was injected at fixed pressure drop (530 psi injection pressure and 460
psi back-pressure) for 311 hours while confined at 700 psi. Dynamic computed tomography (CT)
images were captured at intervals, recording in-situ saturation, phase recovery, and injected fluid
volume over time. Different fractures were identified from the CT scan images (8). History matching
and inverse calculations in this study relied on several key experimental measurements:

• Recovery Factor (RF): The volume fraction of the pore space displaced by the injected
fluid over time. We calculated the RF curve by averaging the saturation of the wetting phase
fluid obtained from CT scan images.

• Boundary Conditions: The constant pressures at the inlet and outlet boundaries were
known based on the experimental setup yielding a fixed pressure drop over the core.

• Injection Volume: The cumulative volume of water injected as function of time was
measured.

• Spatial Saturation Data: Spatial distributions of fluid saturation within the core sample at
different times, obtained through CT scans (19 snapshots).

Regarding the fluid properties, by considering the laboratory conditions, the viscosities of water and
CO2 are assumed to be 0.89 cP (25) and 0.0157 cP (26), respectively, with their interfacial tension
(IFT) assumed to be 0.04 N/m. (27). Water and CO2 density also were set to be 998.7 and 78.9
kg/m3, respectively (28).

A.6 Collocation Points

As it is visualized in Fig. 1, collocation points were extracted separately for the matrix and fracture
domains based on the CT/micro-CT scan coordinates. 23500 matrix spatial collocation points were
used in the core cylinder domain at specified x, y, z resolutions, excluding points in superposition
with fractures. Boundary collocation points were collected for the cylinder ends and radius. Fracture
collocation points were manually extracted from micro-CT scans. Temporal collocation points
were randomly selected based on the

√
t distribution intervals, as it is expected that the system is

mainly controlled by spontaneous imbibition mechanism. (29) have shown how the selection of
temporal points based on

√
t distribution intervals helps in improving PINNs solutions. More detailed

information about the experimental data and the collocation points are provided in Appendix C.
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Figure 1: The collocation points have been used for solving the problem under study. The color
of the points demonstrate the corresponding time for each point in the range t = 1 − 106 sec. a)
The collocation points at the boundary conditions of inlet (y=0) and outlet (y=L) faces (940 spatial
points), b) The collocation points corresponding to the non-flowing boundary condition at r = rc
(8630 spatial points), c) The collocation points corresponding to the fracture (4103 spatial points), d)
The collocation points corresponding to the matrix (23500 spatial points). The matrix collocation
points with distance less than 0.0006 m from the fracture collocation points have been removed. e)
the observational data points used in the data loss: 1) RF points, 2) points with the measured injected
volume, and 3) spatiotemporal points of the in-situ sw measured using CT-scan.

B Physics-Informed Neural Networks: Implementation

Physics-Informed Neural Networks (PINNs) is an approach that is introduced by (6) for more efficient
solving of differential equations, by combining neural networks with physics-based principles. In
this study, let NNs Nm and Nf emulates the funcitonal dependency between the independent and
dependent variables

sw, pnw = NM (x, y, z, t, θ, η) (31)

sfw, p
f
nw = NF (xf , yf , zf , t, θf , η) (32)

The goal is to solve an optimization problem in which

θm,f , η = argmin(Lt) (33)

In this equation, Lt represents the weighted summation of all of the loss terms corresponding to
matrix and fracture, as well as the observational data

Lt = LM
t + LF

t + LD
t (34)

where LM
t and LF

t are the total loss terms corresponding to the initial/boundary conditions, as well
as the PDE residuals for matrix and fracture domains, respectively. Furthermore, LD

t represents the
total loss term corresponding to the errors compared to the observational data values. We will now
explore the specific formulations of each loss term in more detail.

As the scales of pressure data and water saturation data differ significantly, we needed to ensure they
are comparable by bringing them to similar scales. To achieve this, we normalized the pressure loss
terms by dividing all related terms by κp, defined as

κp = (pin + pout)/2 (35)
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Furthermore, since the scale of loss terms related to PDE residuals also deviates significantly from
the [0,1] range, we defined another PDE normalization multiplier as

κr =
tmax

(ρw + ρnw)/2
(36)

where tmax is the time related to the end of experiment, which is almost 1e6 sec (277.78 hrs).

B.1 Flow in Matrix Domain

The solution for the governing equations within the matrix domain is achieved by minimizing a
weighted combination of loss terms, denoted as LM

t . These loss terms account for the residuals of
the PDEs, the initial conditions, and the boundary conditions applied at different boundaries.

PDE residuals: To solve the flow in the matrix, we must simultaneously address the conservation
laws for both the wetting and non-wetting phases. Thus, we define different loss terms according to
equation (17)

LM
w =

1

κr
MAE( ϕ∂t (ρwsw) +∇ (ρwuw) , 0.0), ∈ ΩM (37)

LM
nw =

1

κr
MAE( ϕ∂t (ρnwsnw) +∇ (ρwunw) , 0.0), ∈ ΩM (38)

Here, MAE is the Mean Absolute Error, a metric used to measure the errors. It represents the average
absolute difference between the predicted values and the actual values:

MAE(ŷi, yi) =
1

n

n∑
i=1

|ŷi − yi| , (39)

where n is is the number of observations, yi is the actual value, and ŷi is the predicted value. Then,
the total loss corresponding to the residual of equations of flow in matrix is defined as

LM
PI = (LM

w + LM
nw) · eω

M

, ∈ ΩM (40)

where ωM represents the local weight modifier obtained by self-attention mechanism as outlined in
Appendix D. A loss term is defined to constraint the values of the self-adaptive modifier for

LM
ω = MAE(ωM , 0.0), ∈ ΩF (41)

Matrix-fracture mass transfer: For the matrix collocation points, where mass transfer occurs
between the matrix and the superimposed fracture network, we formulate the residual term of the
governing partial differential equation as follows

LMF
w =

1

κr
MAE( ϕ∂t (ρwsw) +∇ (ρwuw)−

ρw
eV

(
2v⊥w

)
, 0.0), ∈ ΩMF (42)

LMF
nw =

1

κr
MAE( ϕ∂t (ρnwsnw) +∇ (ρwunw)−

ρnw
eV

(
2v⊥nw

)
, 0.0), ∈ ΩMF (43)

The interaction term is governed by the pressure differential between the matrix and fracture and the
local transmissibility of the matrix. In the fully-coupled training stage, we then define

LMF
PI = (LMF

w + LMF
nw ) · eω

MF

, ∈ ΩMF (44)

Here, ωMF is defined as a local self-adaptive weight modifier. A loss term is defined to constraint the
values of the self-adaptive modifier for

LMF
ω = MAE(ωMF , 0.0), ∈ ΩMF (45)
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Pre-training stage: In the pre-training stage, we assumed that the matrix collocation points
corresponding to the fractured zones are acting as the boundary conditions of the system, following
the pressure and saturation trends of the fractures. The matrix and fracture points, however, was
calculated via Buckley-Leverett technique. We directly assign the fracture saturation and pressure
properties to the collocated matrix points

LMF
PT,sw = MAE( (sw − sFw)ξf , 0.0 ), ∈ ΩMF (46)

LMF
PT,pnw

=
1

κp
MAE( (pnw − pFnw)ξf , 0.0 ), ∈ ΩMF (47)

where, sFw and pFnw are the fracture state state variables calculated via Buckley-Leverett and linear
pressure drop equation, explained in Appendix E. Also, ξf is defined as a self-adaptive multiplier
acts as the fracture uncertainty identifier. Technically, it adjusts the local matrix-fracture interactions.
ξf is a trainable vector defined for all fracture collocation points, and initialized to be equal to one.
Then, a restricting loss terms is defined to balance the ξf impacts during the training

LMF
ξf

= MAE( ξf , 1.0 ), ∈ ΩMF (48)

In trying to minimize the trade-offs between the loss terms comparing the PINNs predictions vs.
CT-scan images, as well as the matrix-fracture physical constraints, the values of ξf is adjusted in a
way that the lowest discrepancies was obtained. In scenarios where uncertainty quantification is not a
focus, setting ξf = 1.0 for all points simplifies the optimization process.

Initial conditions: With the initial state of the system fully defined, we can now express the
corresponding loss terms as

LM
IC,sw = MAE(sw(x, y, z, t = 0), swc), ∈ ΩM (49)

LM
IC,pnw

=
1

κp
MAE(pnw(x, y, z, t = 0), pi), ∈ ΩM (50)

Boundary conditions at inlet: At the inlet, the core is exposed to water under a constant injection
pressure, allowing us to express the loss terms as

LM
BC0,sw = MAE(sw(x, y = 0, z, t), sw,max), ∈ ΩM (51)

LM
BC0,pnw

=
1

κp
MAE(pnw(x, y = 0, z, t), pin), ∈ ΩM (52)

Boundary conditions at outlet: To ensure proper flow characteristics, the outlet should be modeled
with a constant pressure boundary condition

LM
BC1,pnw =

1

κp
MAE(pnw(x, y = L, z, t), pout), ∈ ΩM (53)

Boundary conditions at radial surfaces: The radial (rc) boundary condition can be enforced by
adding a term to the loss function that penalizes the deviation from zero of the sum of the partial
derivatives with respect to x and z at r = rc. The loss function term can be written as

LM
BCr =

1

κp
MAE

(
∂p

∂x

∣∣∣
r=rc

+
∂p

∂z

∣∣∣
r=rc

)
, ∈ ΩM (54)

Pre-training: In the pretraining stage, we assumed that the matrix collocation points corresponding
to the fractured zones are acting as the boundary condiitons of the system, following the pressure
and saturation trends of the fractures. The matrix and fracture points, however, was calculated via
Buckley-Leverett technique. The

B.2 Flow in Fracture Domain

Same as the matrix domain, we define the fracture total loss term, LF
t .
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PDE residuals: The conservation of mass in fracture media should also be solved in parallel with
the matrix equations. By utilizing equation (16), we write

LF
w =

1

κr
MAE( ϕ∥∂t

(
ρws

F
w

)
+∇∥

(
ρwu

∥
w

)
+

ρw
eV

(
2v⊥w

)
), ∈ ΩF (55)

LF
nw =

1

κr
MAE( ϕ∥∂t

(
ρnws

F
nw

)
+∇∥

(
ρnwu

∥
nw

)
+

ρw
eV

(
2v⊥nw

)
), ∈ ΩF (56)

Our approach to address the reported limitations of PINNs in capturing shock fronts for fully-viscous
problems (30) involved incorporating a small capillary pressure term. This term introduces a diffusive
effect that mitigates the overly sharp transitions typically observed in the displacement front of the
replacing fluid. Then, the total loss value for the residual of PDE in the fracture domain is calculated
by

LF
PI = (LF

w + LF
nw) · eω

F

, ∈ ΩF (57)

Here, eω
F

is defined as a local self-adaptive weight modifier (see Appendix D). A loss term is defined
to constrain the values of the self-adaptive modifier

LF
ω = MAE(ωF , 0.0), ∈ ΩF (58)

Initial conditions: A similar initial condition is also applied to the fracture collocation points.

LF
IC,sw = MAE(sFw(x, y, z, t = 0), swc), ∈ ΩF (59)

LF
IC,pnw

=
1

κp
MAE(pFnw(x, y, z, t = 0), pi), ∈ ΩF (60)

Boundary conditions at inlet: For the fractures with collocation points at the inlet boundary, we
may also define a similar set of boundary conditions

LF
BC0F,sw = MAE(sFw(x, y = 0, z, t), sw,max), ∈ ΩF (61)

LF
BC0F,pnw

=
1

κp
MAE(pFnw(x, y = 0, z, t), pin), ∈ ΩF (62)

Boundary conditions at outlet: Similarly, for fractures with collocation points at the outlet
boundary, we define a similar pressure boundary condition to satisfy the downstream pressure of the
system in the fracture system.

LF
BC1,pnw =

1

κp
MAE(pFnw(x, y = L, z, t), pout), ∈ ΩF (63)

B.3 Observations

During the inverse calculations, ensuring the PINNs predictions closely align with experimental
observations is crucial. To achieve this, we define a data loss term, denoted by LD

t , which represents
the sum of one or more individual loss terms detailed below:

Recovery factor (RF): As matching the average recovered fluids at all times is time-consuming
and computationally intensive, we matched the RF at one randomly chosen time point during each
epoch. This approach helps the network learn from the observation data without imposing a high
computational burden on the optimizer. So, consider tr as the time corresponding to one of the
available CT-scan images, selected randomly, we can define s̄w as:

RF =
1

NxNyNz

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

sw(xi, yj , zk, t = tr), ∈ ΩM (64)
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In the above equation, it is assumed that the core is fully-saturated by the non-wetting phase at the
beginning of the test. Then, the corresponding loss term will be:

LRF = MAE(RF, s̄w
obs(t = tr)), ∈ ΩM (65)

Here, s̄wobs is the observed s̄w at time tr, obtained by averaging the water saturation from the
CT-scan images.

In-situ water saturation: To incorporate the measured in situ saturation data, a loss term is defined
that minimises errors in local saturation values:

Lsw = MAE(sw(x, y, z, t), sobs
w (x, y, z, t)), for (x, y, z, t) ∈ ΩM (66)

where sobs
w is the measured in-situ water saturation data. Given access to approximately one million

observation points in the spatiotemporal dimensions, we randomly selected a small fraction of them
(25000 points) at each epoch. In this work, the selected points was resampled (randomly) at each
epoch.

Inflow rate constraint: As an observational data, we may have access to the total inflow rate versus
time. To match the inflow rate with the observational data, we write it as:

LQinj
= MAE(Am

∫∫
uwM(y = 0)dxdy + ...

Af

∫∫
uF
w(y

F = 0)dxF dyF , Qobs
inj(t) ), ∈ (ΩM ∪ ΩF ) (67)

We denote the cross-sectional areas of the matrix and fracture as Am and Af , respectively. To
estimate Af , we sum the areas of all fracture collocation points at the y = 0 plane, excluding overlaps.
The area of each individual fracture collocation point is calculated using π

(
ev
2

)2
, where ev represents

the fracture aperture. Finally, we determine Am based on the core radius (rc) and the calculated Af

using the formula Am = π(rc)
2 −Af .

C Experimental Data/Collocation Points

C.1 Experimental Data

In this study, we evaluated an experimental dataset corresponding to the injection of brine into a
fully CO2-saturated fractured shale rock, as detailed in (7). The experiment was conducted using a
core-flooding apparatus integrated with an X-ray µCT imaging setup. Fig. 1e illustrates a map of the
porosity distribution. In the test, a cylindrical Wolfcamp shale core with a mean permeability (Kexp)
of 1.97e-17 m2 (0.02 mD) and an average porosity (ϕ) of 0.102 was used. The reported permeability
represents the average permeability of both the matrix and fractures, with the matrix permeability
expected to be significantly lower. The viscosities of water (25) and CO2 (26) are assumed to be 0.89
cP and 0.0157 cP, respectively, with their interfacial tension (IFT) assumed to be 0.04 N/m. (27).
Water and CO2 density also were set to be 998.7 and 78.9 kg/m3, respectively (28).

The core was initially saturated with CO2, and subsequently, water (brine) was injected at room tem-
perature with an injection pressure (pin) of 530 psi and a backpressure (pout) of 460 psi. Throughout
the test, the core was confined at a pressure of 700 psi, ensuring no lateral flow out of the core. The
experiment lasted 311 hours, during which dynamic CT images were captured at various intervals.
The in-situ saturation data and phase recovery recorded during the injection process have been
processed. In addition, the volume of the injected fluid (water) versus time has been recorded and
utilised in the computations.
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The collocation points corresponding to the matrix and fractures are extracted from the clinical CT
and micro-CT images . Each snapshot of the CT-scan had dimensions of [120, 87, 120], with the
voxel resolution of 0.024 mm3. We had access to 19 snapshots through the text from 0.1 to 311.405
hrs after starting of the injection. In total, we identified and extracted six fractures from the CT-scan
observations, ensuring none of them intersected with each other. The spatial geometry of the fractures
is shown in Fig. 1b. We neglected the impacts of micro-fractures however, although they were
observed in the micro-CT scan images.

Collocation points: We need to collect collocation points separately for matrix and fracture domains.
The spatial coordinates of the collocation points were extracted on the basis of the coordinates of the
points in the CT-scan images. The spatial points have been chosen with the resolution of 30 points
in x and z (dx = dz= 0.81 mm) dimensions, and 60 points in y dimension (dy= 0.96 mm). The
collocation points close to the fracture collocation points have been removed from the list of spatial
points. In total, 73500 spatial points have been used in the cylindrical domain of the core. Refer to
Fig. 1 for a visualization of these collocation points. To address the system’s boundary conditions,
we’ve also collected the requisite boundary collocation points. Fig. 1 shows the collected collocation
points for the boundary conditions at y=0, y=L and r=rc. The radial collocation points have been
chosen via xr = rc.cos(β) and zr = rc.sin(β), , where β represents the angular coordinate of the
point, randomly generated within the range of (0, 2π). The corresponding y values of the points was
extracted from the main collocation points.

Fracture collocation points: The fracture collocation points were manually extracted from mi-
croCT scans, along with porosity and saturation images. Although some of the fractures could be
viewed as separate smaller fractures, we merged the fractures that aligned with each other, reflecting
their consistent behaviour in passing the fluids during the injection process.

Temporal points: The temporal values assigned to the collocation points were randomly selected
and subsequently updated during the resampling process. Anticipating spontaneous imbibition as
the dominant mechanism, we selected collocation points at equal intervals relative to their square
root of time values, ensuring a balanced distribution across the temporal dimension. (29) have
previously shown that the spontaneous imbibition occurs with a constant rate at the square root of
time coordinate, and it is advantageous to distribute the collocation points accordingly during training
of PINNs.

D PINNs Computational Strategies

Adaptive loss weights: In the training of PINNs, especially in complex processes, simultaneous
minimization of various terms often requires addressing conflicting objectives. Numerous studies
have demonstrated that employing adaptive weights for these loss terms can enhance the performance
of PINNs (31). In this study, we applied these techniques by employing self-adaptive weight values
for both the loss terms and the calculated PDE residuals at different domains: matrix (ΩM ), fracture
(ΩF ), and matrix-fracture (ΩMF ). This adaptive weighting strategy enables more effective training
by dynamically adjusting the contribution of different terms, leading to more reliable convergence.

In the context of adaptive-weighting of the PDE residuals at domain collocation points, using trainable
vectors was impractical due to the high number of collocation points and the random selection of
the temporal points. Therefore, we defined different MLP networks - with spatiotemporal vectors as
inputs, and adaptive weights at outputs - to provide self-adaptive weights for PDE residuals at various
collocation points, as suggested by (32):

ωM = NM
ω (x, y, z, t, θ) (68)

ωF = NF
ω (xf , yf , zf , tf , θ) (69)

ωMF = NMF
ω (xf , yf , zf , tf , θ) (70)

The MLP networks had a depth of 4 layers, each with a width of 40 neurons, activated by tanh
activation functions. The weights of these networks were updated during each backpropagation
gradient descent step.
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Resampling of collocation points: The efficient simulation of the processes in 4D spatio-temporal
spaces requires a significant number of collocation points to be chosen and computed during the
training. These calculations create a significant computational load that makes the computations
time-consuming. Various strategies, including resampling, have been proposed to address this
challenge (33). In our study, we implemented a resampling strategy for the collocation points,
introducing randomness at various unique periods during training. Specifically, resampling for the
matrix collocation points occurred every 10 epochs, with approximately 33% of the spatial points
being selected for resampling each time. The uniform sampling strategy inherently leads to a set of
collocation points with statistical homogeneity. We have not applied the resampling strategy for the
spatial points of the fractures.

Furthermore, the temporal coordinates corresponding to the points of the matrix and fractures were
randomly resampled using a non-uniform square root of time (

√
t) distancing approach in the

temporal range of [1 - 106] seconds. For the temporal points also the resampling period was 10
epochs.

Loss term (error) thresholding: To enhance the training efficiency and mitigate the risk of
overfitting, we have incorporated an error thresholding technique into the PINNs model. This
approach involves neglecting the impact of loss terms that fall below certain preset threshold values.
By introducing these threshold limits, we effectively disregard the contributions of loss terms that are
deemed insignificant or negligible, thereby simplifying the training landscape.

e = max(0, e− τ)× w (71)

In this equation, e is the value of the loss term, and τ is the threshold value. We applied this technique
to modifty the values of boundary and initial conidtions for both saturation and pressure terms. The
value of τ = 0.003 for the saturation and pressure of the phases under initial or boundary conditions

Mathematics of the inverse calculations: A critical strategy in inverse computations using PINNs
is the pre-training stage, at the beginning of the calculations. In the stage, the inverse parameters will
be frozen for some epochs - about 2000 epochs in this work. This technique allows the model to learn
the basic mathematical features of the system, before looking for the values of the inverse parameters.
The length of pre-training stage depends on the complexity of the evaluating process.

After the freezing step has been ended, the values of the inverse parameters have been updated at the
beginning of each epoch. The value of the inverse parameter γ have been calculated based on

γ = γie
κθ∗

(72)

where γi is the initial value of the inverse parameter. Also, θ∗ is the trainable parameter in neural
networks, which have been initialised to be zero at the beginning of the training. κ is a regularisation
term that is responsible for the training rate of the parameter. We have found that there should be a
balance between the model training speed and the inverse parameter. The large values of κ makes
the calculations unstable and prone to converge to the wrong values. The exponential form of the
equation allows the algorithm to vary in scales of magnitude. Also, it prevents the model to reach to
the nonphysical negative values.

To consider the uncertainties in the calculations, we defined a strategy to initialize the γi values
randomly. It helps us in reaching a wide range of possible solutions for the problem, not only finding
same solutions. Considering an initial value for the parameter of interest as γ∗

i , we write

γi = γ∗
i ∗ 10ξξm (73)

A random number, denoted by ξ, is drawn from a uniform distribution between -1 and 1. This
randomness is scaled by a model hyperparameter, ξm, which controls the overall level of randomness
injected into the system. In this case, ξm was set to 0.6.

Convolutional kriging: To overcome with the measurement noises in the measured in-situ satu-
ration data, we applied 3D denoising operations on the dataset. We employed a 3D convolutional
kriging approach to effectively interpolate between the cell properties and their neighbour property
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values. Convolutional denoising involves convolving a noisy data with a weighting kernel that
performs smoothing to reduce the noises in the observations, while preserving the main features of
the data. The kernel is an important part of the denoising. In this work, we utilized a semi-Gaussian
weighted kernel that is shown in Fig. 2a. The algorithm of the computations is shown in Algorithm
D. We have used similar kernels for all three dimensions. Finally, a comparison of the saturation
distribution in the rock after some time is shown at two different experiment times is shown in 2b.
We can see that the approach could effectively capture the main features of the data while removing
unnecessary noise.

Figure 2: The impact of 3D convolutional kriging on the in-situ water saturation data. a) The applied
weighting kernel, b) A comparisons of the saturation distribution before and after kriging at two
different times

3D Convolutional Kriging [1] inp: 3D array of input data k1, k2, k3 ←
(
1 1 1 1 2 1 1 1 1

)
the kernel along the dimensions k1, k2, k3← normalize(k1, k2, k3) Normalize the kernels to ensure the mass
balance is attained. out← inp Initialize output array as input i in range(0, 3) out← convolve(out, ki, axis = i)
Convolve over dimension i out

Normalization and denormalization: An essential pre/post processing step in training of PINNs
is normalization and then denormalization of the inlet and outlet variables. By standardizing the
input/output data into a common scale and distribution, it can greatly enhance the model’s stability
and performance. In this work, we have utilized a Z-score normalization shceme. We normalized the
PINNs inlets as

xn =
x− x̄

σ
(74)

And then the outlets denormalized via

x = xn · σ + x̄ (75)

In above equations x̄ and σ are the mean and standard deviation of the variable x in the domain under
study, respectively.

Fast Fourier transformation (FFT): In previous studies, various works have highlighted the
challenges of PINNs in solving high-frequency solutions due to an issue known as spectral bias (34).
This bias causes the network to preferentially learn solutions with lower frequencies, not necessarily
the most true solutions. A prominent strategy to address this involves incorporating Fast Fourier
Transformation (FFT) within the network architecture (35; 29; 11). In this work, we also utilized a
FFT operator, same as (29) ,to make the network able to capture the high-frequency characteristics of
the solution. As it is visualized in Fig. 1, the normalized inlets are first encoded, then transformed to
the frequency domain using an FFT operation. After processing by the main Multi-Layer Perceptron
(MLP) network, the information is returned to the spatial domain via an inverse FFT operator. Only
the real parts of the solution are retained, discarding the imaginary components. Table 3 compares
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the performance of the workflow for solving the benchmark model, when different strategies of FFT
transformation was applied. It confirms the effectiveness of the applied strategy in improving the
performance of the model.

Table 3: The impact of using different Fourier Transformation strategies on the accuracy of the final
results for the forward solution of the benchmark problem

Case Lt (MAE) RF (MAE)
without FT 2.51e-3 6.6e-2
with FT (imaginary) 5.30e-4 2.4e-2
with FT (real) 4.43e-4 2.2e-2

E Buckley-Leverett equation

At the first stage of the PINNs calculations, we have assumed the flow in fractures is governed by the
Buckley-Leverett assumptions, meaning that flow is assumed to be a sole function of viscous forces,
while capillary and gravity forces are neglected.

As a basic solution to this problem, we may follow the solution recommended by (36), called the
Buckley-Leverett (BL) equation. The solution assumes that two fluids are incompressible and that
the flow occurs unidirectionally. Rock properties (e.g., porosity and permeability) is considered
homogeneous and constant. Also, the problem is considered isothermal with no interphase mass
transfer between fluids. The mass conservation equation may be written as (37):

(76)

Rewriting the equation for a 1D problem, and assuming incompressibility of rock and fluids, leads to
a further simplification as:

(77)

where, ui is the Darcy flow velocity of each phase and is determined by Darcy’s law:

(78)

Equation (78) can be rewritten by eliminating pressure in the equation and summing the phase
equations of two phases:

(79)

In this equation, fi is the fractional flow of phase water, and is written as:

(80)

We then employ the Welge tangent method (38) to calculate the local water saturation at each time
step, as shown in the following equation

x =
ut

ϕ

∂fw
∂sw

t (81)

here, qt is the total velocity of the fluids, which we can calculate it via

ut =
kkmax

rw

µw

(pin − pout)

l
(82)

F Appendix: Computational Resources

In this study, we compared two simulation approaches: Finite Difference (FD) and PINNs. We
utilized an in-house FD-based numerical simulator (39) as a benchmark tool. The FD numerical
simulator were developed in C++ and run on an Intel i9-11950H CPU (2.60 GHz) with 32 GB RAM.
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Individual forward simulations for a 27,000 cell model ranged from 30 minutes to 2 hours, depending
on the complexity of effective parameters (e.g., flow parameter shapes and matrix-fracture property
contrasts). The simulator were designed to effectively capture the experimental boundary conditions.

In contrast, PINNs computations were conducted using a single NVIDIA RTX A2000 GPU with the
PyTorch 1.13.1+cu117 framework. Notably, PINNs simulations exhibited almost similar runtimes
for both forward and inverse problems. For a standard inverse computation scenario, with a typical
network size and number of collocation points as reported in Table 2, the inverse computations
typically required nearly 1.5 - 2.5 hours.

G Appendix: History Matching

The PINNs history-matching computations were performed using Adam optimizer on the PyTorch
computational framework. To compare with PINNs, we coupled the Finite-Difference (FD) simulator
with a Nelder-Mead (NM) simplex optimization algorithm (40). The optimizor was deployed in
SciPy library (41). We used the default meta-parameters.

For the synthetic problem, the static model of the system kept constant for all the cases. The goal was
only history-matching of the RF curve. To achieve faster results while accepting a certain level of
error, we utilized a static model with 15,625 cells, which is less than the original synthetic model. A
summary of the optimization is shown in Fig. 3. After approximately 100 iterations, the errors in the
objective function stabilized. As seen in the figure, the history-matching computations took around 20
hours to stabilize. Even after stabilization, the error in the estimated Λ curve was significant, with a
normalized mean absolute error (NMAE) of 0.81. Fig. 3d shows the clear advantage of PINNs-based
history-matching compared to FD-NM history-matching tool.

Figure 3: The results of history-matching using coupled finite-difference numerical simulations,
and Nelder-Mead (NM) optimization. The history-matching continoued for around 100 NM
iterations. a) The MAE in the matched RF, b) The estimated Λ̄ curve compare to the expected true
value, c) The total run-time versus NM iterations, d) the performance (1: run-time, 2: NMAE in the
estimations) of PINNs, and FD-NM history-matching tools are compared.

H Appendix: Sensitivity Analysis

Training Dynamics. The dynamics of training of PINNs is visualized in Fig. 4. It’s evident that
the precision of PINNs computations is enhanced as the training advances. Initially, the PINNs
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predictions encapsulate the high-dimensional attributes of the flow within the matrix. Following this,
the interactions between matrix and fracture flows have been learnt.

Figure 4: The dynamics of training PINNs at different epochs (200-8000) compared to the FD
simulation result at same time (t=47.2 hrs).

Resampling of collocation points. As it is demonstrated in Fig. 5, utilizing resampling techniques
significantly reduces errors while accelrating the computations. Resampling, applicable for both
spatial and temporal domains, helps the network avoid getting stuck on local regions and steers it
towards the optimal general solution of the system in the domain. This is particularly advantageous
for large-scale problems requiring a substantial number of collocation points.

As Fig. 5b illustrates, the effectiveness of the resampling strategy depends on the frequency of
resampling, or how often it’s applied during training epochs. Resampling with very low frequency
can not significantly help the optimization. Conversely, excessively frequent resampling prevents the
system from learning the selected points effectively. In this context, a frequency between 0.03 and
0.1 (corresponding to resampling every 10-30 epochs) appears to be the optimal choice.

Figure 5: The sensitivity analysis on the number of collocation points in the matrix. All the models
were trained for 20000 epochs. a) A comparison of the impact of the number of collocation points
on the MAE in the predicted RF curve, b) The impact of resampling period on the accuracy of the
predictions.
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